IMPERIAL COLLEGE LONDON

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING **EXAMINATIONS 2005**

DISCRETE MATHEMATICS AND COMPUTATIONAL COMPLEXITY

Tuesday, 7 June 2:00 pm

Time allowed: 2:00 hours

Corrected Copy

There are FOUR questions on this paper.

Q1 is compulsory. Answer Q1 and any two of questions 2-4. Q1 carries 40% of the marks. Questions 2 to 4 carry equal marks (30% each).

Any special instructions for invigilators and information for candidates are on page 1.

Examiners responsible

First Marker(s):

G.A. Constantinides, G.A. Constantinides

Second Marker(s): T.J.W. Clarke, T.J.W. Clarke

[Compulsory]

- a) Prove the following statements.
 - (i) For arbitrary sets A and B, $A = A \cap (A \cup B)$.
 - (ii) The function $f: Z \to Z^+$ defined by f(x) = |x| is a bijection. (where Z is the set of negative integers and Z^+ is the set of positive integers).

[10]

- b) State the rule of inference or common fallacy corresponding to each of these statements.
 - (i) $\neg q \land (p \rightarrow q) \rightarrow \neg p$.
 - (ii) If there is an exam, I am nervous. I am nervous, therefore there is an exam.
 - (iii) I am quiet. Therefore I am either quiet or nervous.
 - (iv) $\neg p \land (p \lor q) \rightarrow q$.
 - (v) I am both quiet and nervous. Therefore I am nervous.

[10]

- c) Using the Master Theorem, provide a big-O expression for each function $f_i(n)$ below.
 - (i) $f_1(n) = f_1(n/2) + 3$.
 - (ii) $f_2(n) = 2f_2(n/2) + 3$.
 - (iii) $f_3(n) = 2f_3(n/2) + 3n^2$.

[10]

- d) State an example problem for each of these categories.
 - (i) The problem is known to be solvable, but not known to be tractable.
 - (ii) The problem is known to be tractable.
 - (iii) The problem is known to be unsolvable.

[10]

- a) For a relation R, define
 - (i) transitivity,
 - (ii) symmetry,
 - (iii) reflexivity.

[6]

b) Prove that a relation R on a set A is transitive iff $R^n \subseteq R$ for all $n \in \mathbb{Z}^+$.

[10]

An equivalence relation is a reflexive, symmetric, and transitive relation. Let $x \mod b$ denote the remainder of x when divided by b. Let M be the relation on the set $A \subseteq \mathbb{Z}^+$ where $(x,y) \in M$ iff $x \mod 3 = y \mod 3$.

c) Prove that M is an equivalence relation when $X = \mathbf{Z}^+$.

[8]

d) Construct the digraph of the relation M when $X = \{1,2,3,4,5\}$.

[6]

Let $f: \mathbf{R} \to \mathbf{R}$ be the function given by $f(x) = x^3 + x^2 + x$.

Let $g: \mathbf{R} \to \mathbf{R}$ be the function given by $g(x) = -x^2 - 6x - 8$.

Let $h: \mathbf{R} \to \mathbf{R}$ be the function given by $h(x) = -x^2 - 6x - 5$.

Let P(x) be the predicate x < 0.

ì

Let O(x) be the predicate f(x) < 0.

Let R(x) be the predicate g(x) < 0.

Let S(x) be the predicate h(x) < 0.

X is an arbitrary subset of R.

- a) Express each of these propositions using the predicates above and appropriate symbolic logic connectives and quantification. You may take the universe of discourse as X.
 - (i) "For all real numbers in X, whenever h(x) is negative, so is g(x)".
 - (ii) "x is negative whenever f(x) is negative, when x is a real number in X".
 - (iii) "For every real number x in X, either f(x) is negative or h(x) is negative".

[6]

b) Given that $1 + x + x^2$ is positive for all real x, show by factorising f, g, and h, or otherwise, that the three propositions in part (a) are true.

[14]

c) Given as premises your propositions from part (a) together with the proposition $\exists x \ \neg P(x)$, construct a valid argument leading to the conclusion $\exists x \ R(x)$. At each step of your argument, state the rule of inference used.

[10]

4.

a) Define what is meant by the statement f(x) is O(g(x)).

[4]

b) Prove that
$$f(x) = c_0 + c_1 x + ... + c_n x^n \text{ is } O(x^n) \text{ if } \forall i \ (c_i \in \mathbf{R}).$$
 [6]

c) Derive an expression for the number of multiplications performed by a call to f1(n), shown in Figure 4.1.

[4]

d) Using the result from part (b), derive a big-O expression of the form $O(n^k)$ for the number of multiplications performed by a call to fl(n).

[2]

e) Consider the increasing function f(n), which satisfies Equation 4.1 whenever n is a multiple of b. Prove that for b > 1 and integer and c > 0 and real, f(n) is $O(\log n)$.

$$f(n) = f(n/b) + c \qquad \text{(Equation 4.1)}$$

$$f(n) = f(n/b) + c \qquad \text{(Equation 4.1)}$$

f) Derive a recurrence relation and initial condition(s), and hence a big-O expression, for the number of multiplications performed by a call to f2(n), shown in Figure 4.2.

[4]

```
function fl(n)
                                  function f2(n)
                                 begin
begin
                                    if(n = 0) then
  total := 1;
  for i = 1 to n
                                      result := 1;
    for j = i to n
                                      result := 3*f2(n/2);
      total := total * i * j;
                                  end
  result := total;
end
                                            Figure 4.2
            Figure 4.1
```


$(a,b) \in \mathbb{R} \times (b,c) \in \mathbb{R} \longrightarrow (a,c) \in \mathbb{R}$
(iii) $(a,b) \in R \rightarrow (b,a) \in R$ (iii) $(a,b) \in R \rightarrow (b,a) \in R$ [6]
b) (i) R^CR prall n EZ+ -> R is traville
$R^2 \subseteq R$. Also if $(a,b) \in R$ \wedge $(b,c) \in R$ then $(a,c) \in R^2$. But since $R^2 \subseteq R$, $(a,c) \in R$.
(ii) Ri transleve > R^C = R for all n = 2+ Time for n=1. Induction for n>1. From R^C = R, Mor R^T = R
from $R^n \subseteq R$, then $R^{n+1} \subseteq R$ (ouride $(a,b) \in R^{n+1}$. Then $\exists x ((a,x) \in R \land (x,b) \in R^n)$
But $R^n \subseteq R$ so $(x,b) \in R$. Thus $\exists x ((a,x) \in R \land (x,b) \in R)$. But R is transfere, so $(a,b) \in R$.
(x, y) \if M in \times mod 3 = y mod 3.
(x,y) \in M if $x \mod 3 = y \mod 3$. Now $x \mod 3 = x \mod 3$ thus $(x,x) \in$ M from $x \in 2$.
(11) Symmetry: (12, y) EM > X and 3 = y and 3 > (14, y) EM > X and 3 = x and 3 > (ny a) EM

Thomitivity

(19) $\in M$
(19, $\in M$
(19, $\in M$
(19, $\in M$
(19, $\in M$
(19) $\in M$
(19) $\in M$
(19) $\in M$
(19) $\in M$
(29) $\in M$
(28) $\in M$
(3)

$S(a)(i) \forall a (s(x) \rightarrow R(x))$	
$(((x)) \forall x \left(Q(x) \Rightarrow \rho(x) \right)$	
(11) te(O(2) v S(2))	[6]
(b) $f(x) = x^3 + x^2 + x = x(x^2 + x + 1)$	
$g(x) = -x^2 - 6x - 8 = -(x + 2)(x+4)$	
$h(x) = -x^2 - 6x - 5 = -(x+1)(x+5)$	TOPS
(i) False ig Fa (S(x) 17 R(x))	
$S(x) \iff (x < -5) \lor (x > -1)$	
$\neg R(x) \leftrightarrow -4 < x < -2$	du sa
No such a.	EX ST
(11) False if Fa (Q(x) 1 7 P(x))	
$Q(x) \leftrightarrow x < 0$	
$f(x) \Leftrightarrow x < 0 \Rightarrow \neg f(x) \Leftrightarrow x > 0$	
No such x.	
1 (7 / -0(1) 7 ((1))	
(ii) False y = x (¬Q(x) , ¬S(x))	
$\neg Q(x) \Leftrightarrow \neg 5 < x < \neg 1$	
No weh a.	
No men a.	[14]

<u>_</u> _).	$\exists x \neg P(x) \wedge \forall x (Q(x) \Rightarrow P(x))$ $\exists x (\neg P(x) \wedge (Q(x) \Rightarrow P(x)) [Universal instantiation]$
-	7x (7Q(x) [Modus tallens]
	Ix ¬Q(x) Λ ∀x (Q(x) ν S(x)) Ix (¬Q(x) Λ (Q(x) ν S(x))) [Universal circlestration]
	Ja S(x) (Disjurctive Suflegism) Ja S(x) ∧ ∀x (S(x) → k(x))
	$\exists x (S(x) \land (S(x) \Rightarrow R(x)))$ (Universal intantiation) $\exists x R(x) \land (Modus ponens I)$
,	[10]
,	

[47