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| [Compulsory]

a) Prove the following statements.

(1) For arbitrary sets 4 and B, A=A " (4 U B).
(ii) The function f: Z — Z* defined by f{x) = |x| is a bijection.
(where Z is the set of negative integers and Z' is the set of positive integers).

[10]

b) State the rule of inference or common fallacy corresponding to each of these statements.

i  gr@->9->7p
(ii) If there is an exam, [ am nervous. I am nervous, therefore there is an exam.
(111) I am quiet. Therefore I am either quiet or nervous.

(iv) “pAl@evg g

v) I am both quiet and nervous. Therefore I am nervous.
[10]
¢) Using the Master Theorem, provide a big-O expression for each function f(rn) below.
i) filn) = fi(n/2) + 3.
(i1) fo(n) =2f,(n/2) + 3.
Gil)  fs(n) =2f(n/2) + 3n’.
[10]
d) State an example problem for each of these categories.
(1) The problem is known to be solvable, but not known to be tractable.
(1) The problem is known to be tractable.
(i)  The problem is known to be unsolvable.
[10]
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a) For a relation R, define

(1) transitivity,
(i1) symmetry,
(1i1) reflexivity.

(6]
b) Prove that a relation R on a set A4 is transitive iff R'cRforallneZ.
(10]
An equivalence relation is a reflexive, symmetric, and transitive relation.
Let x mod b denote the remainder of x when divided by b.
Let M be the relation on the set 4 < Z" where (x,)) € M iff x mod 3 =y mod 3.
¢) Prove that M is an equivalence relation when X'= z.
(8]
d) Construct the digraph of the relation M when .( = {1,2,3,4,5}.
(6]
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Let f: R — R be the function given by fix) = 4 +x.
Let g : R — R be the function given by g(x) =—x’ - 6x - 8.
Let 4 : R — R be the function given by A(x) =~ x> —6x 5.

Let P(x) be the predicate x < 0.

Let O(x) be the predicate flx) <O0.
Let R(x) be the predicate g(x) <O0.
Let S(x) be the predicate A(x) < 0.

Y is an arbitrary subset of R.

a) Express each of these propositions using the predicates above and appropriate symbolic
logic connectives and quantification. You may take the universe of discourse as X.

(1) “For all real numbers in X, whenever h(x) is negative, so is g(x)”.
(11) “x is negative whenever f{x) is negative, when x is a real number mnX’.
(111) “For every real number x in X, either f{x) is negative or A(x) is negative”.

[6]

b) Given that 1 + x + x* is positive for all real x, show by factorising f; g, and A, or otherwise,

that the three propositions in part (a) are true.
[14]

¢) Given as premises your propositions from part (a) together with the proposition

Jx —P(x), construct a valid argument leading to the conclusion 3x R(x). At each step of your
argument, state the rule of inference used.

[10]
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<4,

a) Define what is meant by the statement f{x) is O(g(x)).

[4]

b) Prove that fix) = co+ cix + ... + ex" 1s O(x") if Vi (¢c; € R).

(6]

¢) Derive an expression for the number of multiplications performed by a call to £1(n),

shown 1n Figure 4.1.

[4]

d) Using the result from part (b), derive a big-O expression of the form O(n") for the number

of multiplications performed by a call to f1(n).

[2]

¢) Consider the increasing function f{n), which satisfies Equation 4.1 whenever 7 is a multiple
of b. Prove that for & > 1 and integer and ¢ > 0 and real, f{n) is O(log n).

/

=g Gl

flin)=fln/b)+c

(Equation 4.1)

[10]

f) Derive a recurrence relation and initial condition(s), and hence a big-O expression, for the
number of multiplications performed by a call to £2(n), shown in Figure 4.2.

[4]

- function f1(n)
" begin

total := 1;

for i = 1 to n

for j = 1 ton
total := total * i * J;

result := total;

i end

Figure 4.1

function f2 (n)

begin
if( n = 0 ) then
result := 1;
else
result := 3*f2(n/2);
end

Figure 4.2
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