E2.15
IMPERIAL COLLEGE LONDON

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING
EXAMINATIONS 2007

ISE PART Il: MEng, BEng and ACGI

Correct
LANGUAGE PROCESSORS cted Copy

Wednesday, 6 June 2:00 pm

Time allowed: 2:00 hours

There are FOUR questions on this paper.

Q1 is compulsory.

Answer Q1 and any two of questions 2-4.

Q1 carries 40% of the marks. Questions 2 to 4 carry equal marks (30%
each).

Any special instructions for invigilators and information for
candidates are on page 1.

Examiners responsible First Marker(s) : Y.K. Demiris, Y.K. Demiris
Second Marker(s) : J.V. Pitt, J.V. Pitt

© University of London 2007

The Questions

1. [COMPULSORY]

(@)

(b)

()

(d)

(e)

Provide the transition diagram for a push-down automaton that can
be used to recognise the language {a"b", n>0}. Give an example of
a language that cannot be recognised by a push-down automaton.

Provide the formal definition of a Push-Down Automaton (PDA) and
describe the differences between a Push Down automaton and a
Linearly-Bounded Automaton (LBA).

Describe the data structures that are involved in the LR parsing
algorithm and provide a description of the algorithm’s operation.

Describe the algorithm for register allocation via graph colouring,
including a heuristic algorithm for determining whether a graph G is
colourable using a number of colours, K.

A programming language imposes the following restrictions:

« |dentifiers must start with a letter, followed by zero or more
letters or digits. Examples include Var1, HelloWorld, x121,
among others.

 Numbers must be written either in decimal or scientific
notation; the format consists of the following two parts:

o [A mandatory part] one or more digits
o [An optional part] a decimal point, followed by one or
more digits, optionally followed by “E”, an optional plus
or minus sign, and one or more digits.
Examples include 12, 1.234, 12.3E4, 1.2E-34, among
others.
I. Provide the regular expressions for valid identifiers and numbers
for this language; define all special characters you used.
Il. Provide a finite state automaton that, given an input string, will
recognize it as either a valid identifier, or as a valid number.
Clearly mark all final (accepting) states for the FSA.

E2.15: Language processors

[6]

[8]

[8]

[8]

[4]

[6]

Page 1 of 4

2, You are required to construct the minimal deterministic finite state
automaton (DFA) for the regular expression a(blc)*d following the steps
below.

(a) Construct a non-deterministic finite automaton (NFA) using
Thompson'’s algorithm. [12]

(b) Construct the equivalent DFA using the subset construction
algorithm. Explain the intermediate steps you have taken. [12]

(c) Apply the DFA minimization algorithm to the DFA you have
constructed in (b), and show whether your DFA was already
minimal or not. Explain the intermediate steps of the application of
the DFA minimization algorithm. [6]

E2.15: Language processors Page 2 of 4

3. (a) Forthe augmented grammar below, compute the canonical LR(0)
collection of sets of items

V->V
V>V-X|X
X->X*F|F
F->(V)]| a

where {a -, *, (,)} are terminals, and {\', V, X, F} are the non-
terminals. [12]
(b) The computation of the collection of sets of LR(0) items
C= {lg, |1, |2, ey |n}
is the first step in the construction of an SLR parsing table for an
augmented grammar G'. Provide the remaining steps of the

algorithm.
[Hint: You will need to provide the rules for constructing parsing
actions and goto transitions for each state i constructed from |} [18]

E2.15: Language processors Page 3 of 4

4. (a) Calculate the FIRST and FOLLOW sets for all non-terminal symbols

for the grammar below where {a, b, c, d, e } are terminals, and

{A, B, C, D, E} are non-terminals:
1 A->CB
(2) B->bCB |e
(4) C >ED
(5) D->dED]|¢
(7) E ->eAc |a [15]

(b) You are given the following algorithm for the construction of a
predictive parsing table M for a grammar:

For each production rule of the form A -> a do:
* Foreach terminal x in FIRST(a), add A -> a to M[A, x]
* |f FIRST(a) contains €, add A -> a to M[A, b] for each
terminal b in FOLLOW(A)
* |/f FIRST(a) contains &, and FOLLOW(A) contains $,
add A ->a to M[A, §]
* Mark all undefined entries of M as “error”.

Use this algorithm to construct the parsing table for the grammar
above. You should format your parsing table as shown below,

where $ denotes the end of input marker. [185]
Non- Input Symbol

terminal :

2 b c d 2 $
A
B
C
D
E

E2.15: Language processors Page 4 of 4

E2.15 sample answers 2007: page 1 of 3
E2.15: Language Processors
Sample Model answers to exam questions 2007
Question 1
(a) [New Computed Example]: The required PDA is the following:

(labels on the arrows: input symbol, stack symbol popped / symbols pushed, € denotes empty

string,)
start b,a/e ##/¢
—_— —» accept
/
a,a/aa
gy b,a/e

An example of a language that cannot be recognised using a PDA is {a"b"c", n>=1}

(b) [Bookwork] APDAP is defined as (Q, Z, T, 8,q0, Zo, F)

Q: a finite set of N states qo, g1, ..., gn

- X a finite input alphabet of symbols

- I afinite stack alphabet — the set of symbols

- 0(q,a,X): the transition function between states. Given a state q €Q, a € £ or a=¢, and a
stack symbol X €T, the function 3(q,a, X) returns a pair (p,y), where p is the new state and
y is the string of stack symbols that replaces X at the top of the stack

- o the start state

- Zp:the start stack symbol

- F:the set of final states, FC Q

An LBA is a restricted class of Turing machines, and in contrast to the PDA contains a tape, and a
bidirectional read-write head. It can be used fo recognize context sensitive grammars in contrast to the
PDA.

(c) [Bookwork}: LR parsing involves the use of a parsing table (containing goto and action
entries), and a stack. Given an input string w, the algorithm proceeds as
follows:

Set input pointer ip to the first symbol of w$
Repeat:
Let s be the state on top of the stack, and a the symbol pointed by ip
if action[s,a] = shift s’ then
begin
Push a then s’ on top of the stack
Advance ip to the next input symbol
end
else if action[s,a] = reduce A->B then begin
Pop 2*length(p) items off the stack
Let ' be the state now on top of the stack
Push A then goto[s’, A] on top of the stack
Output the production A->B
end
else if action[s,a]=accept then return
else error()
end

d) [Bookwork]:

By constructing the interference graph, where :
1. Variables are nodes in the graph
2. An arc drawn between two nodes indicates that the two nodes cannot share a
register, because they are live at the same time.
we map the problem of register allocation to the graph colouring problem in graph
theory: how to colour the nodes of a graph with the lowest possible number of
colours, such that for each arc the nodes at its ends have different colours.

E2.15 sample answers 2007: page 2 of 3
Heuristic algorithm for determining whether a graph is K-colourable:

For each node n in the graph G that has fewer than k-neighbours, we remove n along
with its edges. This results in a graph G’ and the problem has been reduced to k-
colouring of G’ (since G can be coloured by assigning to n one of the colours note
assigned to any of its neighbours).
Process is repeated until you get either:
e An empty graph (which means that k-colouring of G is possible)
¢ A graph in which each node has k or more adjacent nodes (which
means that k-colouring may not be possible, and spilling code
may be needed).

(e) [New computed example]:

(a) identifier: [a-zA-Z]([a-zA-Z]|[0-9])*
number: [0-8]+(.[0-9]+)?(E[+-]?[0-9]+)?
[Defining [a-zA-Z] as letter and [0-9] as digit, and using those in the regular expressions above
is fine.]

(b) [accepting states are marked with double circle]

start [a-zA-Z]
= (=) ——®

[a-zA-Z]
U [0-9]

[0-9] [0-9]

| v
w \¥, \V/,
[0-9] [0-9] [0-9]

Question 2
[new computed example]

(a) Applying Thompson' algorithm you get the NFA of figure 1.
(b) Applying the subset construction algorithm on this NFA we get:

e-closure(StartState) = {1} = A

e-closure(move(A, a)) = {2,3,4,56,7,8}=B

e-closure(move(A, b)) = e-closure(move(A, c)) = e-closure(move(A, d)) = {}

e-closure(move(B, a)) = {}

e-closure(move(B, b) = e-closure(move(B, C) ={2,3,456,7,8}=B

e-closure(move(B, d)={9}=C

e-closure(move(C, a)) = e-closure(move(C, b)) = e-closure(move(C, ¢)) = e-closure(move(C, d)) = {}
— no more new created states; we are done.

Figure 1 (the constructed NFA)

E2.15 sample answers 2007: page 3 of 3

The resulting DFA;

O+

(c) The DFA we have derived is already minimal, and thus applying the DFA minimization algorithm is
trivial: we start by assuming that all states of the DFA are equal, and we work through the states, putting
different states in separate sets if (a) one is final and other is not (our case here) (b) the transition
function maps them to different states, based on the same input character. The DFA minimization
algorithm proceeds by initially creating two sets of states, final and non-final - non-final: {A, B} and final:
{C}. For each state set created, the algorithm examines the transitions for each state and for each input
symbol. In our case, all state sets contain only one state, so the algorithm terminates here, and we have
(already) the minimal DFA.

Question 3:

(a) [New Computed Example]

Iy: I2: I3: lg. I5:
V>V V' >V, V=X, X->F. F->(V) F->a.
V = V=X V->V.-X X->X.*F V-> V-X
V. X V> X
X-> X*F X -> X*F
X->F X->F
F->.(V) F->.(V)
F->.a F->.a
ls: I7: ls: ls; l10: l11;
V->V-X X->X*F F->(V.) V-> V-T. X->X*F. F->(V).
X-> X*F F->.(V) V->V.-X X->X*F
X->F F->.a
F-=>.(V)
F->.a

(b) [Bookwork]

The remaining steps after the construction of the collection of sets of LR(0) items are:

Construct the parsing entries for state i are determined as follows:
o Foraterminal a, if [A->a.aB] is in |; and goto(li,a) = |; then set action[i,a] to “shift j"
o If[A->a.]is in |;, then set actionli,a] to “reduce A->a for all a in FOLLOW(A)
o If[S8'-=8]is in |i then set action[i,$] to “accept”
The goto transitions for state i are constructed for all nonterminals A using the rule: if goto(li, A)= |
then gotoli,A]=j
All entries not defined by the two rules above, are made “error”.

Question 4:
(a) [New Computed Example]:

FIRST(A) = FIRST(C) = FIRST(E) = {e,a}; FIRST(B) = {b, ¢}; FIRST(D) = {d.}
FOLLOW(A) = FOLLOW(B) = {c, $}; FOLLOW(C) = FOLLOW(D) = {b, c, $};
FOLLOW(E) = {b, d, c, $}

(b) [New Computed Example]: The parsing table for the grammar is:

Non- Input Symbol
terminal
a b [d e $

A A->cB A->cB
B : B->bCB B->¢ B->¢
C C->ED C->ED
D D->¢ D->¢ D->dED D->¢g
E E->a E->eAc

