E2.15
IMPERIAL COLLEGE LONDON

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING
EXAMINATIONS 2004

EEE/ISE PART II: MEng, BEng and ACGlI

LANGUAGE PROCESSORS

Friday, 4 June 2:00 pm

Time allowed: 2:00 hours

There are FOUR questions on this paper.

Q1 is compulsory.
Answer Q1 and any two of questions 2-4.

Q1 carries 40% of the marks. Questions 2 to 4 carry equal marks.

Corrected Copy

Any special instructions for invigilators and information for
candidates are on page 1.

Examiners responsible First Marker(s) : Y.K. Demiris, Y.K. Demiris

Second Marker(s) : G.A. Constantinides, G.A. Constantinides

© University of London 2004

QUESTION 1:

(a)

QUESTION 2:

(b)

QUESTION 3:

(a)

(b)

Describe two advantages for including an intermediate code
generation phase in a compiler.
Within Chomsky’s hierarchy of grammars, describe the main
difference between a type-1 and a type-2 grammar, and provide
two example production rules (one for each type of grammar) that
iltustrate this difference.
Provide the regular expression for valid identifiers in PASCAL
Provide a deterministic finite state automaton (DFA) for recognizing
valid strings derived from the regular expression you provided in
question 1(c). Clearly mark the start and final states of the DFA.
Explain why the grammar below is not LL(1), and use left-
factoring to transform it to its LL(1) equivalent.

A -> aAb

A -> aAc

A->d
Provide an algorithm for partitioning three-address statement
sequences into basic blocks
Provide the definition of L-attributed grammars

Construct the deterministic finite state automaton (DFA) for the
regular expression a(bjc)*a by:

constructing a non-deterministic finite automaton (NFA) using
Thompson'’s algorithm.

constructing the minimal equivalent DFA using the subset
construction algorithm, followed by a DFA minimization step (if
required). Explain the intermediate steps you have taken.

For the augmented grammar below, compute the canonical LR(0)
collection of sets of items

G ->G

G >G-X|X
X ->X*F|F
F->(G)]| a

where {a, -, *, (,)} are terminals, and {G’, G, X, F} are the non-
terminals.
The computation of the collection of sets of LR(0) items
C={lo, 14, I2, ..., ln}
is the first step in the construction of an SLR parsing table for an
augmented grammar G'.
Provide the remaining steps of the algorithm.
[Hint: You will need to provide the rules for constructing parsing
actions and goto transitions for each state i constructed from 1]

E2.15: Language processors

(2]

3]
(3]

[3]

(4]

(3]
(2]

(8]

2]

8]

(12]

Page 1 of 2

QUESTION 4:

(a) For the grammar below, calculate the FIRST and FOLLOW sets
for all non-terminal symbols [where $ represents the input right
end marker, {a, -, *, (,)} are terminals, and {G', G, T, T’, F} are
non-terminals]

G>TG

G ->-TG' | ¢

T-> FT

T->FT |¢

F->(G) |a [10]
(b) The algorithm for the construction of a predictive parsing table M

for a given grammar is as follows:

For each production rule A -> a do:
* Foreach terminal x in FIRST(a), add A -> a to M[A, x]
e If FIRST(a) contains €, add A -> a to M[A, b] for each
terminal b in FOLLOW(A)
e If FIRST(a) contains €, and FOLLOW(A) contains $,
add A ->ato MA, $]
e Mark all undefined entries of M as “error”.

Use this algorithm to construct the parsing table for the grammar

above. Format your parsing table as shown below. [10]
Non- Input symbol
terminal a - * () $
G
&
=
T
F

E2.15: Language processors Page 2 of 2

E2.15 sample answers: page 1 of 2
E2.15: Language Processors
Sample Model answers to exam questions 2004

Question 1

(a) [bookwork] (1) Front-end/back-end separation enables easy porting to new architectures/languages
(2) Machine-independent optimisations can be applied to the intermediate code representation.

(b) [bookwork] Main difference: type-2 grammars are context-free grammars (type-1 are context
sensitive); Typet-example: AB->xyz, Type-2 example: A->xyz

(¢) [new computed example] id: [a-zA-Z)([a-zA-Z]|[0-9])"

(d) [new computed example] B ’
. S)Lava'Z]

;’*\ 1 Of‘?,/’\ VZ] ;—‘:\'\ .

(e) [bookwork/new computed example] Its not LL(1) since FIRST(A) contains “a” in both the first and
second rules; applying left-factoring will give you
A -> aAX
X->bjc
A->d
(f) [bookwork]: First we need to determine the set of leaders, i.e. the first statements of basic blocks;
we use the following two rules for that: (1) The first statement in the sequence is a leader (2) any
statement that is the target of a conditional or unconditional goto is a leader (3) any statement that
immediately follows a goto or conditional goto statement is a leader. Once the leaders are
determined, for each leader, its basic block consists of the leader, and all the statements up to but
not including the next leader.
(g) [bookwork]: L-attributed grammars are grammars where each inherited attribute of Xj (1<=j <= n) in
a production rue of the form A -> Xy Xz... X, depends only on the attributes of the symbols Xy, Xa, ...,
Xj1 to the left of X in the production, and the inherited attributes of A.

Question 2
[new computed example]

(a) Applying Thompson' algorithm you get the following NFA:

/ &
& >®_£3—;@\6>
a5 E o &
@5}@_—7@_—54 € (1)_—46 ®¢
£

(b) Applying the subset construction algorithm on this NFA we get:

e-closure(Start-State) = {1} = A
e-closure(move(A, a)) = {2,3,4,5,6,7,8,9,10} =B @
e-closure(move(A, b)) = e-closure(move(A, b)) ={} BFA @ L . Q
e-closure(move(B, a)) = {2,3,4,5,6,7,8,9,10, 11} =C -)
e-closure(move(B, b)) = {2,3,4,5,6,7,8,9,10} = B
e-closure(move(B, c)) = {2,3,4,5,6,7,8,9,10} = B
C

e-closure(move(C, a)) = e-closure(move(C, b)) = e-closure(move(C, c¢)) = {}

— no more new created states; we are done.

Question 3:

(a) [new computed example]

ID:

o
v Vv

TTIXXOOG
v

VERVARVIRY

IG:

G ->G-.X
X-> . X*F
X->.F
F->.(G)
F->.a

(b) [Bookwork]

G ->X. X->F.
X -> X*F
|7Z |3Z
X-> X*.F F-> (G))
F->.(G) G->G.-X
F->.a

E2.15 sample answers:

F->(.G)
G -> .G-X
G-> X

X -> X*F
X->.F
F-> .(G)
F->.a

page 2 of 2

F->a.

G-> G-T.
X-> X*F

b

X->X*F.

The remaining steps after the construction of the collection of sets of LR(0) items are:
Construct the parsing entries for state i are determined as follows:

o]
o}
o]

For a terminal a, if [A->a.aB} is in I; and goto(l;,a) = | then set actionli,a] to “shift |’
If [A->a.] is in I, then set action[i,a] to “reduce A->a for all a in FOLLOW(A)
If [S'->S.]is in |; then set action[i,$] to “accept”

F->(G).

The goto transitions for state i are constructed for all nonterminals A using the rule: if goto(k, A)=|;

then gotoli,Al=j

All entries not defined by the two rules above, are made “error”.

Question 4:

(a) FIRST(G)=FIRST(T) = FIRST(F) = {(.a}; FIRST(G') = {-, £} FIRST(T") = {*.€}

FOLLOW(G) = FOLLOW{G") = {), $}; FOLLOW(T) = FOLLOW(T') = {-,), $};
FOLLOW(F) = {+,*,), $}
(b) The parsing table for the grammar is:

Input symbol

a - (
G G=TG7 GC?>Te”
& 67> =767 G o & G S E
T T—=> F7° T FT~
T T 3§ | 17> 4F77 T S E T7S€
F F-a F=Ce)

