IMPERIAL COLLEGE LONDON

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING
EXAMINATIONS 2003

LANGUAGE PROCESSORS

Tuesday, 10 June 2:00 pm

Time allowed: 2:00 hours

There are FOUR questions on this paper.

Q1 is compulsory.
Answer Q1 and any two of questions 2-4.

Q1 carries 40% of the marks. Questions 2 to 4 carry equal marks.

Any special instructions for invigilators and information for
candidates are on page 1.

Examiners responsible First Marker(s) : Y.K. Demiris

Second Marker(s) : G.A. Constantinides

) University of London 2003

E2.15

QUESTION 1:
(a)
(b)

(c)
(d)
(e)
(f)

QUESTION 2:

(a)
(b)

QUESTION 3:

(a)
(b)

QUESTION 4:

(a)
(b)

Describe five criteria that can be used to judge the quality of a
language processor.

Briefly describe the types of grammar as defined in Chomsky’s
hierarchy of grammars, and provide the restrictions that each type
imposes on its grammar production rules.

Provide the transition diagram for a push-down automaton that can
be used to recognize the language {x"y", nz1}.

Give an example of a language that cannot be recognized by a
push down automaton.

Describe how you can remove left-recursion from the production
rules of a grammar.

Specify three techniques for code optimisation, and provide a code
example for each.

For a programming language we have the following definitions:

e |dentifiers must start with a letter, followed by zero or more
letters or digits. Exampies include Tempf, index, a123,
among others.

o Numbers can be written either in decimal or scientific notation;
the format consists of the following parts:

o [mandatory] one or more digits

o [optional] a decimal point, followed by one or more
digits, optionally followed by “E’, an optional plus or
minus sign, and one or more digits.

Examples include 26, 1.234, 5.2, 34.4E2, 6.3E-11, among

others.

Write the regular expressions for valid identifiers and numbers for

this language; define all special characters you used.

Provide a finite state automaton that, given an input string, will

recognize it as either a valid identifier, or as a valid number.

Clearly mark all final (accepting) states for the FSA.

Construct the deterministic finite automaton for the regular
expression (afb)*c by:

constructing a non-deterministic finite automaton (NFA) using
Thompson’s algorithm.

constructing the equivalent DFA using the subset construction
algorithm. Explain the intermediate steps you have taken.

Describe the data structures involved, and the steps performed by
the LR parsing algorithm.

Describe the algorithm for register allocation via graph colouring,
including a heuristic algorithm for determining whether a graph G
is colourable using a number of colours, K.

Language processors

[6]

[14]

[10]

[10]

[10]

[10]

Page 1 of 1

E2.15 sample answers: page 1 of 3
E2.15: Language Processors
Model answers to exam questions 2003

Question 1

(a) [bookwork] Five criteria: correctness of generated code, conformity to the language specification,
quality of generated code (size and speed), speed of language processor itself, and user-
friendliness (for example the quality of its error reporting).

(b) [bookwork] Type 0, 1, 2, and 3; 0 (unrestricted grammars), 1 (for alt productions a->3, we must
have |a| < |B|), 2 or context free grammars (only a single non-terminal may appear on the left-
side of a production), and 3 or regular grammars (productions should all be left-linear or
right linear)

(c) [new computed example]

(labels on the arrows: input symbol, stack symbo! popped / symbols pushed)

start @ y,x /¢ @ #.#/¢
— > —_—P> —-——-——P accept

X, X / XX w

X, #/x y.x/e

(d) [bookwork] {x"y"z", n>=1}
(e) [bookwork] By changing all the rules of the form

A->Aa|B
to
A->BR
R->aR|e
(f) [bookwork] 1. Removal of unnecessary jumps:
goto L1 goto L2
e -
L1: goto L2 L1: goto L2

2. Constant folding:
x = constant op constant
can be replaced by calculating the result of the operation and replacing the
operation with the result
3. Moving loop invariant computations outside the loop

forl=1to 10 A =2%pi;
Begin for I=1 10 10
A=2"pi => Begin
Z[l] = A; Z[1=A;
End End
Question 2

[new computed example]

(a) identifier: [a-zA-Z]([a-zA-Z]|[0-9])*
number: [0-9]+(.[0-9]+)?(E[+-]?[0-9]+)?
[Defining [a-zA-Z] as letter and [0-9] as digit, and using those in the regular expressions above
is fine.]

{b) [accepting states are marked with double circle]

start [a-zA-Z]
— () —

[a-zA-Z]

M [0-9]

[0-9] [0-9]

O-O=@-O-O=Q

—

0-9]

[0- 9]

E2.15 sample answers: page 2 of 3
Question 3:

[new computed example]
(a) Thompson's construction of the NFA:

(b) Resulting DFA:

\V/)

ab

Steps:
(1) Calculate start-state of DFA: e-closure of state 0: {0,1 ,2,3,4,5,6,7} -> state g
(2) Calculate move(qo, a), move(qo,b), move(go,c)

Move(do, a) = {3}

e-closure({3}) = {0,1,2,3,4,5,6,7} = g0 > no new state added

Move(do, b) = {5}

g-closure({5}) = {0,1,2,3,4,5,6,7} = q0 - no new state added

move(do,c) = {8}

e-closure({8}) = {8} > new state g,
(3) Calculate move(q1,a), move(q1,b), move(qi,c): all {}. No more states added
(4) Final state for DFA: any new state containing final states of the NFA =2 qy

Question 4

[bookwork]

(@) LR parsing involves the use of a parsing table (containing goto and action
entries), and a stack. Given an input string w, the algorithm proceeds as
follows:

Set input pointer ip to the first symbol of w$
Repeat:
Let s be the state on top of the stack, and a the symbol pointed by ip
if action[s,a] = shift s’ then
begin
Push a then s’ on top of the stack
Advance ip to the next input symbol
end
else if action[s,a] = reduce A->(then begin
Pop 2*length(B) items off the stack
Let s’ be the state now on top of the stack
Push A then goto[s’, A] on top of the stack
Output the production A->B
end
else if action[s,aj=accept then return
else error()
end

E2.15 sample answers: page 3 of 3

(b) By constructing the interference graph, where :
1. Variables are nodes in the graph
2. An arc drawn between two nodes indicates that the two nodes cannot share a
register, because they are live at the same time.
we map the problem of register allocation to the graph colouring problem in graph
theory: how to colour the nodes of a graph with the lowest possible number of
colours, such that for each arc the nodes at its ends have different colours.

Heuristic algorithm for determining whether a graph is K-colourable:

For each node n in the graph G that has fewer than k-neighbours, we remove n along
with its edges. This results in a graph G’ and the problem has been reduced to k-
colouring of G’ (since G can be coloured by assigning to n one of the colours note
assigned to any of its neighbours).
Process is repeated until you get either:
e An empty graph (which means that k-colouring of G is possible)
e A graph in which each node has k or more adjacent nodes (which
means that k-colouring may not be possibie, and spilling code
may be needed).

