Paper Number{s):

IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE
UNIVERSITY OFF LONDON

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING
EXAMINATIONS 2001

ISE PART II: M.Eng. and B.Eng.

LANGUAGE PROCESSORS

Wednesday, 9 May 2:00 pm

There are FIVE questions on this paper.

Answer THREE questions.

Time allowed: 2:00 hours

Examiners: Bailey,R.

19

© University of London 2001

Explain bricfly (100 words cach) the functions of cach of the following
components of a language-processing systen:

i Lexical Analyser

ii. Syntax Analyser (Parser)

it Semantic Analyser (Type-Checker)

iv. Bvaluator

v, Decompiler

Vi Code Generator

Explain with examples what data steuctures are used in the operation of cach ol the
components in « above.

Draw diagrams showing how the components of ¢ above can be combined
together into:

i ACompiler

ii. AnInterpreter

i A Source-to-Source Translator

In cach case you should indicate clearly which of the data structures of b above are
wsed 1o communicate between the components.

In a fragment of a language, the abstract syntax trees for expressions are defined
by the following Haskell datatype:

Plus Exp Exp

data Exp =
| var Name
|
|

Const Int
Index Name Exp

For example, the expression x + 1is represented as:
Plus (Var "x") (Const 1)

The Index node is used to reference clements of one-dimensional arcays: thus the
expression A [x + 1] is represented as:

Index "A" (Plus (var "x") (Const 1))

Use Haskell tw sketeh the design of a simple code or for expressions
represented using this data type. The output from your code generator should he
for a zero-address (stack) machine. State clearly any assumptions you make
about the target instruction set.

n

Now consider the same expression tanguage augmented with function calls taking
« single purameter. The moditicd abstract syntax tree is as follows:

data Exp = Plus Exp Exp
I var Name
| Const Int
| Index Name Exp
| Call Name Exp

Show how your code generator woulkl be extended 1o handle this.

Page Lot 3

16 marks

18 marks

16 marks

{10 marks

[10 marky

Paper ISE 2.8

© University of London 2001 Page 2ot 3 Paper ISE

A language provides expressions which consist of integer and Bootean constants,
a dyadic addition operation to add two integer values, a dyadic comparison
operation to compare two operands of the same type tor equality (yielding a
Boolean result), and a triadic conditional operation o evaluate one of two
expressions of the same type according to the value of a Boolean expression.

Suggest an appropriate Haskell data type tor representing the Abstract Svatax of
expressions written in the language.

Write an Evealuator which will evaluate semantically correct expressions (i.e.
having operands of the correct types) written in the language.

Stiggest an appropriate Haskell data type tor representing the 1ype of value
represented by an expression, including the possibility that it may be semantically
incorrect.

Write a 7vpe-Checker which will determine the type of value represented by an

expression, or teport that it is semantically incorrect (but do not report the reason).

A functional language has the following partial grammar for expressions:

<exp> = <var> | <cond>
<cond> ::= <exp> if <exp> else <exp>

Explain why the grammar above is unsuitable for top-down parsing and trans
it Into a version which is suitable.

Explain why the original version of the grammar is ambiguous, justilying your
explunation by showing a parse tree of an ambiguous sentence or by formally
manipulating the grammar.

State whether your modified grammar from part a is ambiguous and justify your
answer,

Lxpluin a strategy which can be used in a top-down parser to overcome such
ambiguities.

Suggest how the conerete syntax of conditional expressions in the language might
he redesigned 1o remove the original ambiguity,

[+4 marks

17 marks

13 marks

16 marks

[4 mar

15 marks

16 marks

12 mearks

13 marks

S Boolean expressions in a programming language are described by the Tollowing
BNE grammar:

<bexp> <bexp> and <bexp> | <bexp> or <bexp>
neg <bexp> | (<bexp>)
| <vartable> I <constant>

where neg has the highest priority and associates to the right, and has a higher
priority than or (hoth of which associate to the fofry and parentheses override
these priorities in the conventional way. Itis proposed (o write an Operator
Precedence Parser [or the langu

a Write down the Precedence Matrix tor this fragment ol the grammir. I8 marks

b Assuming the following declarations:

data Token = And | Or | Neg | Open | Close | Term
data Tree = Node Token [Tree] | Leaf

type Sentence = [Token]

type Stack a = [a]

Write a precedence parsing function parse :: Sentence -> Tree which will

construct abstract synlax trees from syntactically correct tokenised input

sentenees.

For simpticity, both the terminal symbol tokens <variables> and <constant> are

represented By the single constructor Term. You may also assume the existence of

a predicate Lessthan @ : Token -> Token -> Bool giving true if the < - relation

holds between its first and second arguments. [12 marks

© University of London 2001 Page 30f 3 Paper 1SE

