Paper Number(s):

IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE
UNIVERSITY OF LONDON

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING
EXAMINATIONS 2000

ISE PART I: M.Eng. and B.Eng. and ACGI

LANGUAGE PROCESSORS
Monday, May 15 2000, 2:00 pm

There are FIVE questions on this paper.

Answer THREE questions.

All questions carry equal marks.

Corrected Copy

Time allowed: 2:00 hours

Examiners: Mr R. Bailey

ISE2.8

e,

3a

Draw a diagram showing the structure of a typical Compiler. Describe the function of
each component of the diagram.

[10 marks

For the following Turing program, show (as Haskell expressions) the different program
P ions produced during translation from source to the assembly language of an

idealised stack machine. State any assumptions you make, including any Haskell data
definitions needed to clarify the expressions.

var alpha : imt := 20

var beta : imt := 30

alpha := alpha + 2 * beta

put alpha , beta

[10 marks

The language D allows expression: ining integer and Boolean Constants, integer
Addition operations (adding two integer values), Boolean Equality operations (comparing
two values of the same type), and Selection operations (evaluating one of two
expressions of the same type according to the value of a Boolean expression).

Suggest a Haskell data type for representing the Abstract Syntax of expressions in D.
[2 marks

‘Write an Evaluator which will evaluate semantically correct D expressions (i.e. with
operands of the correct types).

[6 marks

Suggest a Haskell data type for representing the Type of an expression, including the
possibility that it may be incorrect.

[2 marks

‘Write a Type Checker which will find the type of a D expression, or report that it is
incorrect (but do not report the reason).

[6 marks

D also allows variables in expressions. Explain what additional data types and data
structures are needed in the Abstract Syntax, the Evaluator and the Type Checker, but do
not write any code.

[4 marks

Describe the way in which run-time storage is managed in languages which allow
recursive procedures. Why is a language which allows only local and global references
simpler to compile than one which allows procedures to be nested arbitrarily? Describe
how Non-Local, Non-Global variables are accessed in the latter type of language.

[8 marks

For the following Haskell program, indicate the scope of the variables and draw a
diagram showing the state of the stack at the point immediately preceding the evaluation
of the expression marked ®.
elsiemn
=m * lacie n
where lacie n = =n * lacie {(n - 1)
=m+ 5 - e

elsie 4 3

[12 marks

© University of London 2000 Page 1 of 2 Paper ISE 2.8

=

5a

The syntax of Boolean expressions in a language is defined as follows:

<exp> <exp> <op> <exp> | <term>

<op> and | or

<term> <ident> | not <exp> | (<exp>)
<ident> a sequence of letters

Explain what is meant by Ambiguity in a grammar. Show by means of an example or
otherwise that the grammar above is ambiguous.

[4 marks
Explain why the grammar is unsuitable for Recursive Descent parsing.
[2 marks
Transform the grammar so that it is suitable for recursive descent parsing
[4 marks
Assuming the following definitions:
types Token = [Char]
type Sentence = [Token]

type Parser Sentence -> Sentence
use Haskell to write a recursive descent parser which will consume correctly formed
expressions, and terminate with an error message otherwise. You may assume the
existence of isIdent :: Token -> Boolean to identify an <ident> token.
[8 marks

Is your transformed grammar from ¢ above ambiguous? Justify your answer.
[2 marks

Explain briefly how an Operator Precedence parser works. Explain the basic steps of the
algorithm and the data structures used, but do not write any code.

[6 marks

Explain briefly what is meant by an Operator Grammar. A language allows postfix
function applications with the syntax:

<app> <args> . <ident>

<args> <exp> | (<exp> <explist>) | <empty>
<explist> , <exp> <explist> | <empty>

<exp> <id> | <app>

<id> a sequence of lenters

<empty> nothing at all

Modify this grammar to make it into an operator grammar and write down a suitable
Precedence Matrix for the language.

[8 marks
Show the states of the input and of the stacks during the operator precedence parse of the
following function application in the language:
(a,b.f,¢c).g.h
[6 marks

© University of London 2000 Page 2 of 2 Paper ISE 2.8

