£F21a t €273

Paper Number(s): E

~E2.7A.
N 7

IMPERIAL COLLEGE LONDON

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING
EXAMINATIONS 2004

SOFTWARE ENGINEERING: INTRODUCTION, ALGORITHMS AND
DATA STRUCTURES

Tuesday 25" May 2004 2:00pm

There are THREE questions on this paper.

Answer TWO questions.

Corrected Copy

This exam is open book

Time allowed: 1:30 hours.

Any special instructions for invigilators and information for candidates are on
page 1.

Examiners responsible:

First Marker(s): Shanahan, M.P.
Second Marker(s): Demiris, Y K.

Information for Invigilators:

Students may bring any written or printed aids into the exam.

Information for Candidates:

Marks may be deducted for answers that use unnecessarily complicated
algorithms.

Software Engineering: Introduction, Algorithms & Data Structures page 1 of 4

The Questions

1. Assume the existence of the following data types, TArray and TList,
and assume that TList has the standard set of access procedures
Empty, First, Rest, and Add.

type
TList
TLink
record
First : integer;
Rest : TList;
end;

“TLink;

type TArray = array[l..N] of integer;

(a) Write a function with the following header that takes two arrays and
returns a linked list of all integers that occur in both arrays.

function Matches(Al : TArray; A2 : TArray): TList [12]
Ensure that the list returned does not contain duplicates.

(b) In general, how many integer comparisons will the procedure perform in the
best case? When does the best case occur? Explain your answers. [8]

Software Engineering: Introduction, Algorithms & Data Structures page 2 of 4

2.

Software Engineering: Introduction, Algorithms & Data Structures

(a)

(c)

An amoeba reproduces asexually, so each individual has only one parent.
Define a Pascal data type TFamily that can represent the family tree of
an amoeba. Each node in the tree should contain the name of a parent, and
have potentially any number of sub-nodes for children.

Write a function with the following header that takes the family tree of an
amoeba and two names and returns True if they are siblings (ie: have the
same parent) and False otherwise. You may assume that every name in
the tree is unique.
function Siblings(Family : TFamily;
Namel : string; Name2 : string): boolean

Describe in words how you modify your data structure to allow for two
parents.

page 3 of 4

[6]

[10]

[4]

3. Figure 3.1 depicts a binary tree of characters. The tree is not ordered.
A
B C
D E F G
H | J K
Figure 3.1

(a) Write out the sequence of nodes that would be visited by a procedure that
traversed the tree in left-root-right order.

(b) Draw an ordered binary tree with the same contents as the tree in Figure
3.1.

(¢) If a pointer takes up two bytes in memory, what is the storage requirement
for the tree in Figure 3.1, assuming it is represented as a dynamic data
structure? Explain your answer.

(d) Draw a sketch showing how the left-half of the tree in Figure 3.1 might be
represented in an array rather than using pointers. Explain your answer.

Software Engineering: Introduction, Algorithms & Data Structures page 4 of 4

(5]

(5]

[5]

[5]

T

Paper Number(s): [/ E2.7B |

IMPERIAL COLLEGE LONDON

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING
EXAMINATIONS 2004 '

PRINCIPLES OF COMPUTERS AND SOFTWARE ENGINEERING

Wednesday 9" June 2004 2:00pm

There are THREE questions on this paper.

Answer TWO questions.
This exam is OPEN BOOK.

Time allowed: 1:30 hours.

Any special instructions for invigilators and information for candidates are on
page 1.

Examiners responsible:

First Marker(s): Constantinides, G.A
Second Marker(s): Demiris,Y.K.

Adon pajoaiio)

Special Information for Invigilators:
This section of the examination is open book. Candidates may bring any written or

printed material to the examination.

Information for Candidates
Throughout this section of the paper, the notation “0x” before a number means that
the number is expressed using hexadecimal representation.

Principles of Computers Page 1 of 4

The Questions

1.
A subroutine scramble is shown below.

scramble
STMED r13!, {ro-r3}
MOV r3, #0

loop
LDRB r2, [ro], #1
ADD r2, r2, r3
CMP r2, #'2°
SUBGT r2, r2, #('zZ'-'A')
ADD r3, r3, #1
CMP r3, #('2'-'A")
MOVGT r3, #0
STRB r2, [r0,#-1]
SUBS rl, rl, #1
BNE loop
LDMED r13!, {ro-r3}
MOV pc, 1r

a) Consider the following instructions. For each one, state which registers, memory
locations, and flags may be modified as a result of execution.

(1) LDRB r2, [ro], #1
(i) STRB r2, [ro,#-1]
(ii1)) SUBGT r2, rz2, #('Z'-A')
(iv) SUBS rl, rl, #1
(v) STMED ri3t!, {ro-r3}
[7]
b) Describe the purpose of the link register.
(2]

¢) Assuming that on entry r0 points to a message consisting of upper-case characters,
what 1s the function of subroutine scramble?

(2]

Prior to subroutine entry, r0 has the value 0x8100 and r1 has the value 0x3. A
partial content listing of the memory is shown in Table 1, below.

Table 1
Address Data
0x8100 ASCII encoding of ‘A’
0x8101 ASCII encoding of ‘B’
0x8102 ASCII encoding of ‘C’

d) Provide a partial content listing of the memory after subroutine execution, listing
all locations where that data has changed.
[3]

¢) Modify the code so that any spaces in the original message are left unscrambled.

[6]

Principles of Computers ' Page 2 of 4

2.

Given a block of N memory words, a Jength-2 moving sum filter finds the arithmetic
sum of the values of 2 consecutive memory words, as illustrated in

Figure 1. This process is repeated a total of N-1 times, with the starting location of the
window of 2 locations changing by one memory word per iteration.

window at first

/ iteration
i W

) *
| , |
N locations —P
N-1
locations
window at second
iteration
Input memory block
P _ v Output memory block W el TTQ*\\
Figure 1 oM Bc ARV
1 A 4
o ReTot &
Sy ;v\ su.\ @& A”’v\

a) Write a subroutine called movingave to implement this moving average filter. S ’A‘Q:‘—GD
The subroutine should take three arguments: 10 should contain the starting address of '
the input block of memory, rl should contain the starting address of the output block,

and r2 should contain N.
[10]

b) In general, a length-K moving sum filter finds the arithmetic sum of the values of K
consecutive memory words. This process is repeated a total of N-K+1 times, with the
starting location of the window of K locations still changing by one memory word per
iteration.

Extend your subroutine to this general case. The subroutine should now have four
arguments: r0 should contain the starting address of the input block of memory, rl
should contain the starting address of the output block, r2 should contain N, and r3

should contain K.

[10]

Principles of Computers Page 3 of 4

3.

a) Assemble the following sequence of ARM instructions into (binary or hex)
machine code.

loop LDR r2, [r0], #4
ADD r2, r2, #1
CMP r2, #0
STRGT r2, [ro,#-4]
BGT loop
SWI 0x11

[10]

The address of the first instruction is 0x8000, and r0=0x1000 immediately before

entering this code fragment. A partial content listing of the memory is shown in Table
2, below. : .

Table 2
Address Data
0x1000 0x00000100
0x1004 0x00000200
0x1008 0x00000000

b) Write a time-ordered list of instruction fetch accesses for this code. For each
memory access, state the address of the word accessed, whether the access is a read or
write, and the data read or written (in hex).

[NB: You may assume that the processor is not pipelined]

[2]

c) Write a time-ordered list of memory data accesses performed by this code. For each
memory access, state the address of the word accessed, whether the access is a read or
write, and the data read or written (in hex).

[2]

d) It is proposed to use both an instruction cache and a scparate data cache to speed up
the execution of this code fragment. There are to be 4 lines in each cache, each of one
word.

Assuming the caches are initially empty, draw a diagram illustrating the cache

contents after the access sequence above has completed. For each cache line, include
the tag, the valid bit, and the data.

[4]

e) For each cache, state the number of hits and misses caused by this execution.

[2]

Principles of Computers Page 4 of 4

E1.9/E2.7A; Page 1 of 3

Model Answers

1. (a) [New theoretical application]
function Matches(Al : TArray; A2 : TArray): TList;
var X, Y : integer;
begin
Ans := EmptyList;
for X := 1 to N do
for ¥ := 1 to N do
if Al1[X] = A2[Y]
then Ans := AddND(Al{X],Ans);
return Ans;
end;

If the student gets above right but omits to check for duplicates, they should
get half the total marks.
function AddAND(Z : integer; List : TList): TList;
{ Add with check for duplicates }
var Ptr : TList;
begin
Ptr := List;:
while (Ptr <> EmptyList) and (First(Ptr) <> Z) do
Ptr := Rest(Ptr);
if Ptr = EmptyList
then return Add(Z,List)
else return List;
end;

(b) [New theoretical application]

The best case is when the two arrays have no elements in common. Then
the calls to AddND will not require any integer comparisons and the total
number is N2 — once for each call to AddND. There will be N2 calls because
the invocation is embedded in two nested for loops, each of which carries
out N iterations.

(If the student’s answer allows for early exit of the inner for loop, then this
will be reduced to N comparisons)

The worst case is where the two arrays are identical. Then the total
number of comparisons is . We have the
same N2 comparisons as before, plus the comparisons carried out by the
calls to AddND. The outer loop executes N times, and the i iteration of the

inner loop requires i-1 comparisons, because the list of common elements
will have length i-1.

E1.8/E2.7A: Page 2 of 3

2. (a) [New theoretical application]

type
TFamily
TNode =
record
Parent : string;
Kids : TList;
end;

Il

“TNode;

TList = "“TLink;
TLink =
record
First : TFamily;
Rest : TList;
end;

(b) [New theoretical application]

function Siblings(Family : TFamily;
Namel : string; Name2 string): boolean;
var Kids : TList; Found boolean;
begin
if Family = nil
then return False
else begin
Kids := Family”.Kids;
if Member(Namel,Kids) and Member(Name2,Kids)
then return True
else begin
Found := False;
while Kids <> nil and not Found do
begin
if Siblings(Kids”.First,Namel,Name2)

then Found := True
else Kids := Kids”.Rest;
end;
return Found;
end;
end;

(c) [New theoretical application]

The TNode type definition would have to include a field for each parent.
But it would not be possible to encode every hereditary relationship in a
single tree. To do this, we would require multiple interconnected trees with
different root nodes (a forest).

E1.8/E2.7A: Page 3 of 3

3. (a) [New theoretical application]
DBHEIAJFKCG

(b) [New theoretical application]
F \
B J
A D H K
C E G |
(c) [New theoretical application]

Each node including the leaves requires two bytes of storage per pointer
plus one for the character. So the total is 55 bytes.

(d) [New theoretical application]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Each node takes up three elements of the array. The first element is the
character, the second is the index of the left sub-node, and the third is the
index of the third sub-node. If a node has no sub-node, then a 0 goes in the
appropriate location (analogous to the nil pointer).

PemxcspLes OF ComPUTRES— Mot ARSULEAS E"ol_(f*)
Tt €& o

D)

TSR Rea s MEM HALS
() ro 2 [e07) NONE
(i) r2 Cro =1} NV
(i) r NONE NONSE
(iv) rl]ONE ALL
(V) rt3 ri3ls P13 151 NoNE

b) To swoRe T RETORN ADIRESS FRom A SUBROUTINC cAL.
(BL ToosTRICTTON)

) Tr oocomes THE MessAGs . TE Py pooTes AUARSITERT
CHARACTER (€ poROTER CTPHGRTERT CHaRACTTER i,
APD CoONTING ofF CAHARACTERS SIS FROM zeto,
THEN]

C.‘ = T P‘

LITH WRAP-ARDONY fReM 2 P AL

A) AdREsS DATA ‘
Ox Bto | ARcry’ ©Copmg of ¢!
O« BlO2 AScrr eowobzrs of ‘€

e)

SC(‘CL»\H.Q

STMED rR) Lro-rdy
MoV 3, #0
=t LORB r2, OO} #)
CHP r2, #'!
Be&® SKip
A0 r, ri, "3
CMP (2, #'2'
soRaT 2, r2, #('2' - "'a")
ADD £3, 3, #A)
cHp (3 a2 - A)
MONGT 3 #0
STRR 2, Cro, d-1]
Skip SURS oV, el sl
BNE Lo
LOM €D pf’ﬁz, fro-r3d

Hov FC’ (,p

2.

a)

b)

MD“MOM’?’

LooP

WACN] AQ o v«a

Leop !

Laopl

STMED
SoR
LoR
LOR
ADD
$TR
SORS
g
LDMED
MeN

STMeD
SUR
SOl
MoV
MN
LR
A0D
SUBRS
BPL.
STR
#00
SuBS

%eo
MoV

Mg' {ro-r&

ry, f?. A\ /M-l ife—tm*ions

¢3, [rol, B¢

Y‘(r [rol)

r3, r3 ri | fow-—\ Sum

V'Z C(‘\-i 4

rZ, r2, #\

(\13?1‘ (vo-rk}

P< Lr

p13) fro-rd}

r3 ,3,,;;\ : mof convenient t ey K—|
r?.l r2, "3, r hods N-w+1 now
r6’ #O ; 6 helds runmmi total

¢5, 3, sk A Dbc;alf iersu»\ e (in 57{'&&)
ty, [ro, S

{‘6 e, v L ranAnin total

vS, rS A nest erm

Loof . tive or 2ero o = more ferm
ré, Crl\ Ay -, l’}md resal

r0, ro, i j, Laindows

e ore A) " Sunple update

[{ro-ré}

fc., Lf‘

A UR e rO) #F

—3 Ok Et4o02001 o~)
ADD 2, r2, #) —> Ox £E2832200\ <« (2)
CMP (1, #0 — OxE3s2roe0p <« (3)
SRET r2, [ro,#7k) —» ocCSoeo20ol (W)
BT Loop —s Ok CAFFEFF A =Is)
SWE Onll —» Ox £F 0000} | & (6)
b) ADDRESS ReA) kT Te OATA MESS[HET [FoR paRT e,
On 3000 R (1) ABNE M
Ox 360 4 R () M
Ox $o008 R (3) =~ M
Ox g00¢C R (&) M
Ox o0 R (s) N M
Oorg0O© A)} * M
Ox €00k R (v = H
oxgoo g A (3) » &
Ox 300 C R (&) a
Oxgo‘ (o) R Ls) * M
Oxgoeo0 R v " M
oxrgoo R (2 R
©x300 % R (3) H
Ox 80 o< ﬁ (&) ! H
Oxg01 0 R (s) " M
Oxkg0l i R (o - M
¢) AppRESS Reanp(LTz DATA Msss (T [For patre]
Ox (060 R Ox (o0 M
Ox 109° (V8] Ox Vol H
Ox 100 R Ox oo M
Oxtod & W Ox 201 H
O 100% R Or 00D M
&) TNSTRUCTION CACHE
CAcke Lmae A VALTY) PATA
o Ox 80| h) O CA FE€F FF A
l kg0 Os Efocovl |
2 Ox 00 % Ox E3520000
£ Ox 00 Y Ox CS5oo200 |
DATA CACHE
CACHE Lot | B4 VAL OATﬂ
o Ox loo v (Y) Ox 1o}
| Ox OO v LY Ox 20|
2 Oxri0o \/%Z)\ Ox obo
2 ? X ?

[e) AISTRLTIoON CALHE lo M:ssés/ & HETS

DATA cacHe . 3 MTsses / 2 RTTS

