Paper Number(s): E2.7B

IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE
UNIVERSITY OF LONDON

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING
EXAMINATIONS 2002

EEE PART II: B.Eng., M.Eng. and ACGI

PRINCIPLES OF COMPUTERS AND SOFTWARE ENGINEERING

Monday, 10 June 2:00 pm

There are THREE questions on this paper.

Answer TWO questions. Cor rected COpy

Y

This exam is OPEN BOOK.

Time allowed: 1:30 hours.

Examiners responsible:

First Marker(s): Cheung,P.Y K.
Second Marker(s): Demiris,Y.K.

Information for Invigilators:

Students may bring any written or printed aids into the examination.

Information for Candidates:

None.

Page 1 of 4

1. Consider the following code fragment in ARM assembly language.

b)

c)

d)

MOV rl, #0
MOV r0, #10
LOOP1 STR r0, [xrl], #4
SUBS rQ, r0, #1
BNE LOOP1
MOV rl, #0
MOV rQ, #5
LOOP2 LDR r2, [rl, #20]
LDR r3, [rl)]
ADD r2, r2, r3
STR r2, [rl]l, #4
SUBS r0, r0, #1
BNE LOOP2

Write down an order list of memory locations, which are accessed by this code fragment,
showing the memory address and data, and whether it is a read or a write access.

[8 marks]

Assuming that the microprocessor takes 100ns per clock cycle, all instructions with and
without data memory access take 2 and 1 clock cycles respectively, state how long this code
fragment will take to execute.

[2 marks]

Assume that the microprocessor uses 32 bytes of direct-mapped cache for data only, and each
cache line is 4 bytes. Further assume that the entire data cache is dirty at the start of the code
fragment. How many memory accesses result in cache ‘hit’ and cache ‘miss’ respectively
when this code fragment is executed?

[7 marks]

As a result of using cache in the microprocessor, each clock cycle is shortened to 10ns. The
cache miss penalty is 120ns. How long will this code fragment take to execute as a result of
using cache?

[3 marks]

Page 2 of 4

Run-length coding is a method of compression where repeated data values are represented by a repeat
count (i.e. the length of the run) followed by the data value itself. For example a sequence of byte
values (in hexadecimal)

4A 4A 4A 4A 4A 4A 09 09 09 00 A7 A7 A7 A7 €69 01

1s compressed to:

06 4A 03 09 01 00 04 A7 01 69
The repeat count value has a maximum value of 255 and the data value are from 0 to 255.

a) Write a subroutine RunLength in ARM assembly language for the following specification:

Subroutine RunLength - run-length compress a block of data stored as bytes

; Input parameters: rl - starting address of data to be compressed

r2 - starting address of output buffer where
compressed data is to be stored

r3 - no of bytes to be compressed

; Return parameters: None

; The output format should be:
<repeat_count> <byte_value> <repeat_count> <byte_value>

[10 marks]
b) An alternative run-length encoding rule is given below:

1) If (datavalue = 0) or (run-length > 3), encode it as

<00> <repeat_count> <byte_value>
i1) For all other situations, the data are left as they are (i.e. no encoding is applied).

Therefore, the above byte sequence will be encoded as:

00 06 4A 09 09 09 00 01 00 00 04 A7 69

Modify the subroutine in a) to implement this encoding rule.

[10 marks]

Page 3 of 4

3. The following ARM code fragment processes the characters in a NULL-terminated string. In order to
use the code, r0 should point to the start of the string.

2ol s

a)

b)

d)

e)

Loop LDRB rl, [z0], #1
CMP rl, #0
BEGL . finished
CMP rl, #'A’
BLT loop
CMP rl, #'Z’
BGT loop
SUB r2, rl, #'A'-‘a’
STRB r2, [r0, #-1]
B loop
finished

What is the effect of executing the above code on a string?
[3 marks]

Re-write the above code to make it into a subroutine called “TL” that could be called from the
program below as shown. Use an “empty decreasing” stack.

AREA prog, CODE, READONLY
SWI_Exit EQU &11

ENTRY

MOV rl, #0

MOV r2, #5
Ll ADR r0, string

BL TL

SWI SWI_Exit
string = “Hello World!”, 0x0a, 0x0d, O

END
[6 marks]

In the program shown above, the value of label L1 is 0x8080 and the stack pointer has value
0x1000 before entry into the subroutine. State and justify the value of the link register during
execution of subroutine TL.

[3 marks]

Draw a diagram showing the numerical addresses and numerical contents of the stack
immediately after pushing the necessary data onto the stack. (Assume that no intervening code
marked “...” alters either register rl or register r2).

{4 marks]

You are provided with a subroutine “printc” which prints the character in register r2 to a
connected peripheral device. An example use is shown below.

MOV
BL

r2, #'A’
printc

Re-write your subroutine so that it also calls printc for each character of the modified string
[4 marks]

Page 4 of 4

C2b

2ot L
Answer to Question 1
a)
Address (hex) Data (hex) R/W hit/miss (for part c.)
0000 0000 000A W Miss
0004 0000 0009 \\ Miss
0008 0000 0008 \\% Miss
000C 0000 0007 \\ Miss
0010 0000 0006 W Miss
0014 0000 0005 M4 Miss
0018 0000 0004 \'% Miss
001C 0000 0003 \\ Miss
0020 0000 0002 \4 Miss
0024 0000 0001 W Miss
0014 0000 0005 R Hit
0000 0000 000A R Miss
0000 0000 000F \\ Hit
0018 0000 0004 R Hit
0004 0000 0009 R Hit
0004 0000 000D W Hit
001C 0000 0003 R Hit
0008 0000 0008 R Hit
0008 0000 000B W Hit
0020 0000 0002 R Hit
000C 0000 0007 R Miss
000C 0000 0009 Y Hit
0024 0000 0001 R Hit
0010 0000 0006 R Miss
0010 0000 0007 % Hit
[8 marks]
b) 89 cycles @ 100ns = 8.9 microseconds.
[2 marks]
c) 14 *miss’, 11 ‘hit’ (see table above).
[7 marks]
d) 89 x 10ns + 14 x 110 ns = 2.43 microseconds.
[3 marks]

L
Page % of 4

Answer to Question 2

a)

b)

RunLength STMED rl3t, {r0-ré6,
ADD r6, rl, r3 ;
Start_loop MOV rd, #1 ;
LDB r5, [rl], #1 ;
loop2 CMP rl,ré ;
BCS finished ;
CMP rd, #sff ;
BEQ end_run ;
LDB r0, [rl]), #1 ;
CMP r0, r5 ;
BNE end_run ;
ADD rd, r4, #1 ;
B loop2 ;
end_run MOV rd, [r2], #1 ;
MOV r5, [r2], #1 ;
B start_loop ;
finished LDMED rl3t, {x0-xr6, pc}
END
RunLength2 STMED r13!, {rO-r6, rl4};
ADD r6, rl, r3 ;
start_loop MOV rd, #1 ;
LDB r5, [rll, #1 H
loop2 CMP rl,ré6 ;
BCS finished ;
CMP rd, #Sff H
BEQ end_run i
LDB r0, [rl], #1 ;
CMP r0, r5 H
BNE end_run H
ADD rd, rd4, #1 ;
B Loop2 ;
; so far same as before
end_run CMP r5, #0 ;
BEQ run_encode
CMP r4, #03 ;
BHI run_encode ;
no_encode MOV r5, [r2], #1 :
SUB r4, rd, #1 H
BNE no_encode
B start_loop ;

; if gets here,
run_encode MOV
MOV
MOV

B
LDMED
END

finished

rQ,
rd,
r5,

run-length encode

#0
[r2], #1
[r2], #1

start_loop

rl3!,

{r0-r6, pc}

rid4}

preserve context
ré6 has last address of buffer + 1
r4 counts the run-length
fetch a byte
if reached terminating address
finished,
else if run-length is maximum
output current data
else get the next byte
if not the same,
terminate run and output
else increment run-length count
loop back for another test
output run-length
output data value
loop back for more

[10 marks]

preserve context
r6 has last address of buffer + 1
r4 counts the run-length
fetch a byte
if reached terminating address
finished,
else if run-length is maximum
output current data
else get the next byte
if not the same,
terminate run and output
else increment run-length count
loop back for another test

if data is zero, run-length encode
else if run-length > 3

encode it,
else just output data

. the required no of times

loop back for more
0 is special code
output run-length

output data value
loop back for more

[10 marks]

Page 6 of 4

Answers to Question 3

This question tests the students understanding of stacks and subroutine calls in assembly language.
a) This code converts any upper-case characters in the string to their equivalent lower-case characters.
Any other characters remain unchanged. The modified string overwrites the original string.

[3 marks]

b) One possible solution is shown below.

TL STMED r13!, {r0, rl, r2}
loop LDRB rl, [r0], #1
CMP rl, #0
BEQ ret
CcMP rl, #'A’
BLT loop
CMP rl, #'2°
BGT loop
SUB r2, ri, #'A'-‘a’
STRB r2, [r0, #-1]
B loop
ret LDMED r13t, {r0, rl,r2}
MOV pc, rld

Two marks for PUSHing 10, rl and r2, two marks for POPing r0, r1 and r2 back in the correct order.
One mark for using the correct pair (STMED, LDMED) of stack instructions. Whether r14 is pushed
or whether Ir is moved into pc doesn’t matter — award one mark for each of these solutions. Deduct
one mark per unnecessary register PUSHed or POPed.

[6 marks]

¢) ADR instruction has address 0x8080, BL instruction has address 0x8084, SWI instruction has
address 0x8088. The link register (r14) will therefore hold the value 0x8088 during execution of
subroutine TL.

[3 marks]

d) Answers will vary depending on solution to (b), but for the solution given above:

Address Data

0x 1000 0x0005
0xOFFC 0x0000
0x0FF8 0x808C

One mark for correctly recognizing an EMPTY stack, one mark for correctly recognizing a
DECREASING stack. One mark for recognizing that addresses differ by 4 bytes. One mark for
ordering the data in the correct way.

[4 marks]

e) This question tests nested subroutines. The key modification necessary is to store the link register.
One possible solution is shown below

1
Page 7 of 4

TL STMED r13!, {x0, rl1, r2, rl4d}

loop LDRB rl, [xr0], #1
CMP rl, #0
BEQO ret
CMP rl, #'A’
BLT print
CMP rl, #'727
BGT print
SUB r2, rl, #'A'-‘a’
STRB r2, [r0, #-1]
print BL printc
B loop
ret LDMED r13!, {r0, rl, xr2, rld}
MOV pc, rl4d

One mark for inserting the BL instruction, one mark for recognizing the need to save and one mark
for recognizing the need to restore the link register. One mark for printing ALL characters of the
modified string (not just the modified characters)

[4 marks]

"
Page 8 of 4

