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1. (a) Consider the circuit in Figure 1.1 below. Assume that the opamps
are ideal, RC = 1, C2 = 0 and that all initial voltages are zero.

i. Derive the differential equation relating V;(¢) and V(¢) and the

differential equation relating V() and V(). [4]

ii. Derive the transfer function relating V;(s) to V(s) and the trans-

fer function relating V (s) to V,(s). (4]
iii. Derive the transfer function relating V;(s) to V,(s). [2]
iv. Let Vi(t) = 22 applied at t=0. Find V,(t). [2]
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Figure 1.1

(b) In the feedback loop in Figure 1.2, G(s) = (s_-&l_)-g and K is a

variable gain.
i. Sketch the locus of the closed—loop poles for 0 < K < c0.  [6]
ii. Derive the range of values of K for which the closed-loop is Stab[lf]

iii. Derive the value of K for which the closed-loop response is mar-
ginally stable. What is the frequency of oscillation? [4]

(c) Consider the feedback loop in Figure 1.2 with G(s) = ESVIE)] 143 —_

i. Sketch the Nyquist diagram of G(s). (8]
ii. Take K = 1. Use the Nyquist diagram to deduce the number of
unstable closed—loop poles for the loop in Figure 1.2. [6]
—h?—. K > G(s) =
Figure 1.2
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2. Consider the voltage feedback arrangement shown in Figure 2 for the speed
control of a DC motor. The motor shaft drives a load with inertia J and
is connected to a tacho generator. Here, v, is the reference voltage, va, ia
and R, are the armature voltage, current and resistance, respectively, v;
is the tacho voltage, w is the motor shaft speed and E is the generated
EMF. Also in the figure, k > 0 is a design parameter. Assume that

o The field flux is constant so that E is proportional to w and the
developed torque, T, is proportional to i,. Take the constant of
proportionality to be the same and equal to k.

e The Power Op-Amp (POA) has negligible output resistance and dy-
namics, so that we can make the ‘virtual earth’ assumption.

e Torque disturbances and friction are negligible so that all the devel-
oped torque is supplied to the load.

o The tacho voltage is proportional to the speed with proportionality

constant k;.
(a) Derive the transfer function G(s) = w(s)/va(s)- [5]
(b) Derive an expression for v,(s) in terms of v.(s) and w(s). [5]

(c) Hence, derive and clearly draw a block diagram representation of the
feedback-loop. Take the reference signal to be —v.(s) and the output
signal to be w(s). Indicate clearly the signals v;(s) and va(s).  [9]

(d) Set Ry=J=ke=k;=1. Derive the maximum value of k such that
the settling time of the closed-loop due to a step input is at most 1

second. [11]
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3. Consider the feedback control system shown in Figure 3 below. Here,

1
Ga= s(s+2)?

and K (s) is the transfer function of the compensator.

(a)

(b)

(d)

For K(s) = k, a constant compensator, draw the root locus accu-
rately as k varies in the range 0 < k < co. (6]

Take K(s) = k where k > 0. Find the range of values of k for which
the closed loop is stable. (6]

Take K(s) = k where k > 0. Use the answer to Part (b) to find the
value of k for which the closed loop is marginally stable. For this
value of k, what is the corresponding frequency of oscillation? [6]

Design a proportional-plus-derivative compensator such that the fol-
lowing design specifications are simultaneously satisfied:

i. The closed loop is stable.

ii. The settling time for the dominant poles is at most 4s.

iii. The damping ratio of the dominant poles is 715

Draw the root locus of the compensated system. [12]

K(s) =  G(s)

Figure 3
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4. Consider the feedback control system in Figure 4.1 below. Here, G(s) = 8/(s +2)3
and K(s) is the transfer function of a compensator.

r(s) y(s)
K(s) o G(s) >

Figure 4.1

(a) Sketch the Nyquist diagram of G(s), clearly indicating the low and
high frequency portions, as well as the real-axis intercepts. (7]

(b) Set K(s) = K, a constant compensator. Give the number of unstable
closed-loop poles for all (positive and negative) K. [7]

(c) Take K = 1. Determine the gain and phase margins. (8]

(d) Consider the bode plots shown in Figure 4.2 below for a first order
compensator. Without doing any actual design, give a brief descrip-
tion of the compensator and its effects on the performance of the
feedback loop and on the stability margins. You should also empha-
size the difficulties involved in the design. 8]

Bada Dugram
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SOLUTIONS (E2.6, Control Engineering, 2007)
(a) 1. We make the virtual earth assumption and take RC = 1 and

Cc2=1,
Vih) L V@) | v o V) | Vo) _
T'i‘T‘i—CV(t)—O, _-R_+ R =0.
ii. Taking Laplace transforms in Part i,
V(s) 1 Vo(s) 1

Vils) s+1°  V(s) 2
iii. Multiplying the transfer functions in Part ii,

Vo(s) _ 1
Vi(s) ~ 2(s+1)

iv. Here, Vi(s) = 2/(s + 2). So, expanding in partial fractions,

1 1 1
Vol )= (+1)(s+2) s+1 s+2
t_ 3t

Taking inverse Laplace transforms, V,(t) =e " —e¢

(b) i. The root locus is shown below.

Root Locus
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ii. The Routh array gives the stability range as —1 < K < 8.

iii. We use the Routh array to find K for marginal stability. So,
K = 8. The auxiliary polynomial is s? + 3 and so the frequency
of oscillation is v/3.
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. The Nyquist diagram is shown below:

Nyquist Diagram

ii.
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From the Nyquist theorem, N = Z — P where N(= 1 in this case)
is the number of clockwise encirclement of the point —1, P =1
is the number of open loop unstable poles, and Z is the number
of closed-loop unstable poles. Hence Z = 2 and the closed—loop
has two unstable poles.



(a) The developed torque is T(t) = kein(t) and the generated EMF is
E(t) = kew(t). Since friction is negligible and all the developed
torque is supplied to the load, we have that T'(¢) = Juw(t) or keis(t) =
Jw(t). However, v4(t) = Ryia(t)+E(t) = Raig(t) +k.w(t). It follows

that ia(t) = 7-va(t) - j‘%w(t).Thus

k. (é%(z) - ;—Zw(t)) = Ju(2).

Rearranging and taking Laplace transforms,

- k2 ke
Jw(t)-f-—R—;w(t)-—Eva(t} = (JS+§:) w(s)= Eva(s}
So
__ke/Ra
¢O)= 71 e/R.

(b) Making the virtual earth assumption: ﬂ—‘ﬁﬁ 4 %ﬂ}gl + ﬁ"}?—) =0,
since v;(t) = ksw(t). Taking Laplace transforms and rearranging,

ki
Ua(8) = —vp(s) — Ew(s).

(c) Using the last equation and the expression for G(s), the block dia-
gram becomes,

~r(s) ) va(s) | kR, w(s)
Js+kZ/R,

vt (s) ke

1/k |

(d) Putting in the numbers, the block diagram simplifies to

—vn(s Ua($
f‘( ) N m a( ) l
\ i s+ 1
1/k e
The closed-loop pole is the root of the characteristic equations + 14+ k™1 = 0

and is equal to —(1+ k™~1). Thus the settling time 7, = 4/(1+k™1).
For Ty <1 we need k < 1/3.

w(s)




(2) The plot is shown below. The angles of the asymptotes are +60°, 180°
and the centre is at —4/3. The breakaway point is at —2/3.
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(b) The characteristic equation is s3+4s%+4s+k=0. The Routh array:

g8 1 4
s? 4 k
s | (16-k)/4

1 k

We require no sign changes in the first column. Thus 0 < k < 16. -
(c) From Part (b), when k = 16, the closed-loop is marginally stable.
Putting k=16 in the Routh array, the auxiliary polynomial is 4s>+16
which has roots at 352 and so the frequency of oscillations is 2 rad/s.
(d) A PD compensator has the form K(s) = k(s + z). To satisfy the
specifications the required closed—loop poles are at —1 4 j. Next, we
find z. Let the angle between (—1 + j) and z be 6. Applying the
angle criterion 8 — (45° + 45° + 135°) = £180° or # = 45°. Thus
z = 2 and the compensated open loop is 1/(s(s + 2). The root locus
is shown above. The gain criterion gives k = —s(s + 2)|s=—14; = 2.



4.

(a)

(b)

(d)

The Nyquist plot is shown below. The real-axis intercepts are found
by setting Im[G(jw)] = 0. Thus w; = 0,£2v/3,00 so G(jw;) =
1,-0.125, —0.125, 0.

The number of unstable closed-loop poles associated with gain K can
be determined by the number of encirclements by G(s) of the point
—1/K. Thus0< K <8=>stable, K> 8=>2unstable poles, —1<K <
0= stable, K <—1=>1unstable pole.

Since the negative real-axis intercept is at —0.125, then the gain
margin is 8. For the phase margin we solve |G(jw)| = 1. However,
the Nyquist diagram is inside the unit circle except when w=0. Thus
the phase margin is 180°.
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The bode plot is that of a phase-lead compensator K(s) = }%:é%:
where wy = 1 and w, = 10. It has gain close to unity for frequencies
below wg and close to Eﬁ— =10 beyond wy. The phase is positive and
large between wy and w, but small below and above. The increase in
gain at frequencies above wy, tends to degrade the stability margins as
well as the noise attenuation properties, while the phase-lead tends to
increase the phase margin, which is stabilising. It is thus important
to balance the destabilising increase in gain against the stabilising
increase in phase, which is a difficult task. We should place wy, and
wp in the crossover frequency range (|G(jw)|=~1.)
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