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1. (a) Consider the circuit in Figure 1.1 below. Assume that the opamps
are ideal, RC =1 and that all initial voltages are zero.

i. Find the differential equation relating V;(t) and V(t) and the

differential equation relating V() and V,(t). (4]
ii. Find the transfer function relating V;(s) to V(s) and the transfer
function relating V' (s) to V,(s). [4]
ili. Find the transfer function relating V;(s) to V,(s). (2]
iv. Let V;(t) be a unit step applied at t=0. Find V,(t). (2]
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(b) In the feedback loop in Figure 1.2, G(s) = GFNG+ G LI and
K is a variable gain.
i. Sketch the locus of the closed-loop poles for 0 < K < co.  [6]
ii. Find the value of K for which the response of the two dominant

poles is critically damped. [4]
ili. Find the value of K for which the closed-loop response is mar-
ginally stable. [4]

(c) Consider the feedback loop in Figure 1.2 with G(s) = (;:—U‘g(m)--

i. Sketch the Nyquist diagram of G(s). (8]
ii. Take K = 1. Use the Nyquist diagram to deduce the number of
unstable closed—loop poles for the loop in Figure 1.2. (6]
ADT—P K =  G(s) >
Figure 1.2
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2. Consider the feedback system in Figure 2.1 for voltage regulation. Here,
vr(t) is the reference voltage, v,(t) is the supplied output voltage and i(t)
is the load current. R, is the output resistance of the op—amp. Figure 2.2
overleaf gives E(t) in response to a unit step input in ve(t), where E(t) is
the opamp open-loop output voltage.

(a) Use Figure 2.2 to derive a first order approximate transfer function

relating ve(s) to E(s). [5]
(b) Derive an expression for v.(s) in terms of v,(s) and v,(s). [5]
(c) Derive an expression for v,(s) in terms of v.(s) and i(s). [5]

(d) Hence, derive and draw a block diagram representation of the feed-
back loop. Take the reference to be —uv,(s) and the output to be
Uo(8). Indicate the signals ve(s) and i(s) on the block diagram. [8]

(e) Express vo(s) in terms of v.(s) and i(s). Take R, = 1 Q. Suppose
vr(t) and i(t) are both step inputs of sizes V,. and I, respectively.
Find the steady state value of v,(t). Comment on the effect of the
feedback amplifier. (7]
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Figure 2.1
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3. Consider the feedback control system shown in Figure 3 below. Here,

1

66 =G 6+D

and K(s) is the transfer function of the compensator.

(a) For K(s) = k, a constant compensator, draw the root locus accu-
rately as k varies in the range 0 < k < oco. [7]

(b) Take K(s) = k where k > 0. Find the largest value of k for which
the closed loop response is non—oscillatory. [7]

(c) Design a first order compensator K (s) such that the following design
specifications are simultaneously satisfied:

i. The closed loop is stable.

ii. The settling time for the dominant poles is at most 4s.

iii. The damping ratio of the dominant poles is %

Draw the root locus of the compensated system. [16]

r(s) y(s)

Figure 3
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4. Consider the feedback control system in Figure 4 below. Here,

1

R

and K(s) is the transfer function of a compensator. '

(a) Sketch the Nyquist diagram of G(s), indicating the low and high
frequency portions. Also, calculate the real-axis intercepts. [8]

(b) Take K(s) =1 in Figure 4.

i.

ii.

Show that the closed-loop is stable and determine the gain and
phase margins. [5]

on

ii. Comment a8 the stability and performance properties of the

closed-loop. Your answer should include analysis of tracking,
disturbance rejection and noise attenuation. [6]

i. Explain what is meant by a first order phase-lag compensator.

Your answer should include an expression for such a compen-
sator, and a description of its frequency response. 5]

Without doing any actual design, describe how a phase-lag com-
pensator would effect the stability margins and the steady-state
tracking properties of the loop. (6]

K(s) G(s) >

v

Figure 4
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SOLUTIONS (E2.6, Control Engineering, 2006)
(a) 1. We make the virtual earth assumption and take RC =1,

Vi) , V()

: V(L) | Volt) 3
V(t) = — t) =0.
R 7 +CV(t) =0, B + =R +CV,(t) =0
ii. Taking Laplace transforms in Part i,
V(s) _ 1 Vo(s) 1

Vis)  s+1°  V(s) s+2
iii. Multiplying the transfer functions in Part ii,
Vo(s) 1
Vis) T G+
iv. Here, V;(s) = 1/s. So, expanding in partial fractions,
1 _ % - ._{_}i _ 1
s(s+1)(s+2) s s4+2 s+1

Vo(s) =

-2t i

Taking inverse Laplace transforms, V,(t) = 0.5 + 0.5e™* —e™".

(b) i. The root locus is shown below.

Root Locus
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Imaginary Axis
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ii. For critical damping, the poles are equal and real. We differen-
tiate G(s), set to zero and find real roots. So, K =~ 0.385.

iii. We use the Routh array to find K for marginal stability. So,
K = 60.



Imaginary Axis
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The Nyquist diagram is shown below:

Nyquist Diagram
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ii. From the Nyquist theorem, N = Z — P where N(= —1 in this

case) is the number of clockwise encirclement of the point —1,
P =1 is the number of open loop unstable poles, and Z is the
number of closed-loop unstable poles. Hence £ = 0 and the
closed-loop is stable.



2.

(a) A first order transfer function has the form £A/(1+ 7s). The value
of A from the graph is 10%, while 7 is the time the response reaches

0f, Af . ____ A
63% of its final value, so 7 = 0.01. Thus E(s) = mvg(s).
(b) Using a potential divider rule at the op—amp input gives

ve(s) — vr(s)

Gl = 0.5 = —v(s) = —0.50,(s) — 0.50,(s).

(c) At the op—amp output we have

A

E(S) - 'U'D(S) = Ro"':(s) = ‘U(,(S) = _('TS"F 1)

ve(8) — Roi(s).
(d) Using parts (a) and (b), the block diagram becomes,

; i

R,

Vo

—_— 0.5 (rs_-i-lj —

0.5 <

(e) Using the block diagram in part (d) and a manipulation gives

0.54 Ro(rs +1)

75+ 14054 e} — ().

vo(8) = — 78+1106A"

Here, i(s) = I/s and v.(s) = V;./s. We use the final value theorem
to get

0.54 v 1

“TT05A” "T1xosal SV

Jim vo(t) = lim sv,(s) =

The feedback amplifier keeps the supplied voltage almost equal to
—V, for a wide range of applied loads.



(a) The plot is shown below.
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(b) For a non-oscillatory response, the closed-loop poles must be real.
By inspection of the root—locus, the largest value of k is when the
two poles are real and equal. The characteristic equation is given by
1+ b =0 = 5% +35+2+k=0 = (s+1.5)+k—0.25=0 = k=0.25.

(c) A first order compensator has the form K(s) = k/(s — p). For a
damping ratio of 1/v/2, the real and imaginary parts of the poles
must have the same magnitude. The settling time is given by 4/r
where r is the magnitude of the real part. Thus r = 1 for a settling
time of 4s. The required closed-loop poles are then at —1 + j. Next,
we find p. Let the angle between (—1 + j) and p be 6. Applying the
angle criterion 0— (90° +45° +6) = +£180° or # = 45°. Thus p = —2.
The root locus is shown below. We use the gain criterion to find k:
k=—(s+1)(842)%|s=-145 =2




4. (a) The Nyquist plot is shown below. The real-axis intercepts can be
found by evaluating the Routh array and checking for marginal sta-
bility. This gives intercepts at frequencies w; = 0,%1,00 and so
G(jw;) = 1,-0.25,-0.25, 0.
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(b) i. The number of unstable closed-loop poles is determined by the
number of encirclements by G(s) of the point —1, which is zero.
Thus the closed-loop is stable since G(s) has no unstable poles.
Since the real-axis intercept is at —0.25, the gain margin is 4.
For the phase margin, we need the intercept with the unit circle
centred on the origin. In this case, only when s = 0 will this
happen, so the phase margin is 180°.

ii. Since the stability margins are high, we expect good stability
robustness against model uncertainties. However, since the gain
is low at all frequencies, we expect poor tracking and disturbance
rejection at low frequencies, and good sensor noise attenuation
at high frequencies.

(¢) i. A phase-lag compensator has the form

_1+s/wo

Kloy= 1+s/wp’

0 <wp <wp
The phase-lag compensator has gain close to one for frequencies
below w, and close to =2 < 1 for frequencies beyond wy. The

phase is negative and la'lj*ge between these two frequencies but
insignificant elsewhere.



ii. Thus phase-lag compensation can increase low frequency gain,
and hence improve steady-state tracking since

. 1 .
le(jw)| = |mm| |r(5w)]

without increasing high frequency gain (and so degrading the
gain margin). Care should be taken concerning the phase—margin
since the phase lag may deteriorate this. We should therefore
place w, and wyq in the ‘middle’ frequency range.



