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1. Consider the mass-spring-damper system shown in Figure 1 below,
in which y(t) denotes the displacement of the mass M from its rest
position. A force f(t) is applied to the mass M as shown. Take
M =1Kg and D, = Dy = 1Ns/m.

(a) By considering the balance of forces on the mass, derive the dif-
ferential equation relating f(t) to y(t). [6]

(b) Derive the transfer function G(s) between f(s) and y(s). 6]

(c) Sketch the locus of the poles of G(s) for 0 < K < oo. 8]
(d) Find the value of K for which the response is (i) critically damped,
(ii) marginally stable. 6]
(¢) Take K = 1N/m. Suppose that f(t) = cost. Find the steady-
state response Yss(t). 7
(f) Take K = 1N/m. Sketch the Nyquist diagram of G(s). [7]
L L
Ed D
M
l y(t)
D,
K< e
/2
Figure 1

Control Engineering Page 1 of 4



. Consider the feedback system shown in Figure 2 below for the regu-
lation of a voltage supply. Here, v,(t) is the reference voltage, v,(t)
is the supplied output voltage and i(t) is the load current. R, is the
output resistances of the op-amp. The op—amp voltage is modelled as

A
E(s) = —'('r_s+—1)3ve(s)
where A > 0 is the op~amp dc—gain, 7 > 0 is a time constant and v,(s)
is the the Laplace transform of the voltage at the op—amp negative
terminal.

(a) Derive an expression for v(s) in terms of vr(s) and v,(s).  [6]
(b) Derive an expression for v,(s) in terms of v.(s) and i(s). [6]

(c) Hence, derive and draw a block diagram representation of the
feedback loop. Take the reference to be —v,(s) and the output to
be v,(s). Indicate the signals v.(s) and i(s) on the block diagram.

(6]

(d) Find the maximum value of the op-amp gain A for which the

voltage regulator is stable. [12]
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3. Consider the feedback loop shown in Figure 3 below. Here

A

and K (s) is a compensator.

(a)

(b)

r(s)

Take K(s) = k where k is a constant gain. Draw the root—
locus accurately as k varies in the range 0 < k < 0. Your
answer should include the centre and angles of the asymptotes,
the breakaway points and the range of values of k for closed-loop
stability. [10]

Design a proportional-plus—derivative (PD) compensator K(s)
for the feedback loop shown in Figure 3 such that

i. the closed-loop is marginally stable, and

ii. the closed-loop response is oscillatory with a frequency of
oscillation of 1 rad/s.

Sketch of the root-locus for the compensated system. [10]

Design a PD compensator K (s) for the feedback loop shown in
Figure 3 such that

i. the closed-loop is stable, and
ii. the closed-loop has a double pole at —2.
Sketch of the root-locus for the compensated system. [10]

Y
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Figure 3
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4. Consider the feedback control system in Figure 4 below. Here,
_ 4
T (s+1)3

and K (s) is the transfer function of a compensator.

G(s)

(a) Sketch the Nyquist diagram of G(s), indicating the low and high
frequency portions. Also, calculate the real-axis intercepts. [7]

(b) Take K = 1. Show that the closed-loop is stable and determine
the gain and phase margins. [7]

(c) Without doing any actual design, briefly describe how a phase-
lag compensator,

_l+s/ug

T 148/’

K(s) 0 <wp<uwp

would effect the stability margins and the steady-state tracking
properties of the loop. (8]

(d) Without doing any actual design, briefly describe how a phase—
lead compensator,

_l4s Juo
K(s)-l—f—s/wp’ 0 < wp < wp,
would affect the gain and phase margins. Your answer should
emphasize the difficulties involved in the design. (8]
r(s) e(s) y(s)
qT——A K(s) > G(s) >
Figure 4
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SOLUTIONS (E2.6/ISE2.9, Control Engineering, 2005)

(a) | f(t) = Mi(t) + (D1 + Da)y(t) + Ky(t) = ii(t) + 24(t) + Ky(t).
(b) Taking Laplace transform: (Ms?+4(D1+D3)s+K)y(s)=f(s). So

_ 1 _ 1
G(s) = Ms2H(Di+D3)s+K — sZ42s+K

(¢) The poles are the roots of s? +2s + K = 0, or equivalently, of
1+ KG(s) = 0 where G(s] = 1/s(s +2). The locus of the poles
of G(s) is then the root locus of G(s) which is shown below.

ook Locus
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(d) (i) [K = 1] (i) [K=0.]

(e) Since G(s) = 1/(s + 1)? is stable, the steady-state response to a
sinusoid of frequency w is also a sinusoid of the same frequency,
with an amplitude |g(jw)| and phase Zg(jw). Since w =1,

Yss(t) = |g(s)|cos (t + Lg(5)) = 0.5cos (t — §) = 0.5sint.

(f) The Nyquist diagram is shown below:

Wy st Daagram
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2.
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(a) Using a potential divider rule at the op-amp input gives

Ve(8) — vp(8)

ools) —or(s) 00 7 [vels) = —0.5vr(s) — 0.5uo(s).

(b) At the op~amp output we have

E(s) = vo(s) = Roi(s) = |vo(s) = —ﬁgve(S) — Ryi(s).

(c) Using parts (a) and (b), the block diagram becomes,

| 1

R,
—Up —, ) B Vo
—_ 0.5 ——»(P——» m —-

0.5 <

(d) The closed-loop characteristic equation is

0.54

P =0=78>+37%% +3rs + 1+ 054 = 0.
TS

1+

The Routh array is then

s3 73 37

52 3r2 1+0.54
o |B=ga,

1 1+ 0.54

For stability, we require no sign changes in the first column. Since
7 > 0 we require (1): 1 +0.54 > 0 and (2): 8 —0.54 > 0. Since
A is positive, this reduces to



L

(a) The root-locus plot is shown below. The centre and angles of the

Peot cin
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asymptotes are|o = 0.5 & 1 = £90° |and the breakaway point is

The closed-loop is lunstable for all £ > ﬂ

(b) A PD compensator has the form K(s) = k(s + z) where k > 0
and z > 0. The required locations of the closed—loop poles are at
+j. The angle criterion gives z = 1 and the gain criterion gives

k=1s0|K(s)=s+ 1| The root-locus is shown below.
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(¢) The required locations of the closed-loop poles are at —2, which is
a break-in point. Setting F(s) = k(s+2z) and dG(s)K (s)/ds =0
for s = —2 gives z = 0.8. The gain criterion gives ¥ = 5. So
IK(s) = 5(s + 0.8) | The root-locus is shown below.

&




4.

(a) The Nyquist plot is shown below. The real-axis intercepts can be
found by setting the imaginary part of G(jw) to zero. This gives

intercepts at |w; = 0, £v/3, 00 | and so [G(jwi) =4,-0.5,-0.5,0.

Nyquist Diage am.
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(b} The number of unstable closed-loop poles is determined by the
number of encirclements by G(s) of the point —1, which is zero.
‘Thus the closed-loop is stable i since G(s) has no unstable poles.

Since the real-axis intercept is at —0.5, |the gain margin is 2 l
For the phase margin, we need the intercept with the unit cir-
cle centred on the origin. We solve |G(jw)| =1, this gives w; =

/43 —1 and arg [G(jw )] = —153°.

(¢) The phase-lag compensatcr has gain close to one for frequencies
below w, and close to 5% < 1 for frequencies beyond wy. The
phase is negative and large between these two frequencies but in-
significant elsewhere. Thus phase-lag compensation can reduce
high frequency gain (and so improve stability margins) with-
out reducing low frequency gain (and hence degrading steady-
state tracking since |e(jw) = ]%%Hr(ywﬂ) or introduc-
ing phase lag at high frequency (which destabilizes the loop). We
should place w, and wg in the ‘middle’ frequency range.

The phase margin is then 27°.|

W

(d) The phase-lead has gain close to 1 for w <wg and close to o> 1
for w > wy,. The phase is positive and large between wg and w,
but small elsewhere. Thus the gain increase for w > w, degrades
stability margins while the phase-lead increases the phase mar-
gin. It is important to balance the destabilizing increase in gain
and the stabilizing increase in phase. We should place w, and wq
in the crossover frequency range (when |G(jw)|~1).
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