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[. The figure below illustrates an RLC circuit. The capacitor has capacitance C', the
inductor has inductance L and the resistor resistance R. The input signal is the
applied voltage v;(t) and the output signal is the voltage across the capacitor vo(1).
The current through the circuit is indicated as i(t). Take the charge across the

capacitor to be ¢(t).

(a)
(b)

(¢)

Derive the differential equation relating ¢(t) to v;(t). [3]
Derive the relationship between ¢(t) and v,(2). [1]

Derive a state-variable model

2(t) = Az(t)+ Bui(t)
vo(t) = Da(t)

Indicate clearly your choice of the states. [4]

Determine the transfer function relating v; to v,. [4]

Set L = 0.5 H and suppose that v;(¢) is a unit step input voltage applied at
t = 0. Derive the values of R and C so that the following design specifications
are satisfied:

i. The capacitor voltage v,(t) settles to its steady-state value within 1072
seconds.

ii. The maximum overshoot of v,(¢) is 5% of its steady-state value.

What is the steady state value of v,(¢)?. (8]

(Hint: You may take the settling time to be four times the time constant as-
sociated with the rate of decay of responses. Also, for a standard second order
system, you may take the value of the damping ratio corresponding to a mawi-

mum overshoot of 5% to be ( = %)

i —
L
w(w] O
l_—.____
¢ vo(1)
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9. Consider the feedback system below for the regulation of a voltage supply. Here,
v,(t) is the reference voltage, v,(t) is the supplied output voltage and i(t) is the
load current. R;, Ry and R, are the input, feedback and output resistances of the
op—amp, respectively. The op—amp voltage is modelled as

A
— v
785+ 1

E(s) = e(8)

where A4 is the op-amp dc-gain, 7 is a time constant and v.(s) is the the Laplace
transform of the voltage at the op—amp negative terminal. Define
Rl RZ
= —-— , roy = —————m——
Ry + R, *T Rt R

(]

In parts (a), (b) and (c) below, all references are to Laplace transforms of signals.

(a) Derive an expression for ve(s) in terms of v,(s) and v,(s). (3]
(b) Derive an expression for v,(s) in terms of vc(s) and 4(s). [3]
(c) Hence, derive and clearly draw a block diagram representation of the feedback

loop. Take the reference signal to be —v.(s) and the output signal to be v,(s).
Indicate clearly the signals v.(s) and i(s) on the block diagram. 5
5

(d) Derive an expression for v,(s) in terms of v,(s) and i(s). 4
4

(e) Set B, =1  and A = 10°. Suppose that v.(t) = V, is a constant reference
voltage. Derive the minimum value of r; such that the steady-state output
voltage drop between the no-load condition (i(t) = 0) and a full constant load

current of 5 A is at most 1 V. (Hint: You do not need the value of 7). (5]
Ry
- R, —
A l(f)
I
v (t) g
vo(1)

Page 2 of 5 Paper E2.6



3. Consider the feedback loop in the figure below. Here

. 1
Gls) = sfps—2
and
k
K =
V(s) T a

where k and a are design parameters.

(a) Derive the range of values of k& and a for which the closed-loop is stable. Your
answer should be of the form k; < & < ky and a; < a < ay where ky, kg, a;
and a; are real numbers (or +00).

[6]

(b) Derive the range of values for k and a for which the closed-loop is marginally
stable.
[6]

(c) By using the answer to part (b), or otherwise, find the values of k and a for
which the response y(t) to a unit impulse reference input r(t) is oscillatory
with the frequency of oscillation being 1 radians per second.
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1. Consider the feedback loop in the figure below. Here

s+ 3

S = DG )

and h'(s) is a compensator.

(a) Take KA (s) =k where k > 0 is a constant gain.

(1) Draw the root-locus accurately as k varies in the range 0 < k < oo. Your
plot should indicate clearly the direction of the locus, the location of any
breakaway points and asymptotes.

[5]

(i) Find the minimum value of k for which the closed-loop system step re-
sponse is critically damped.
[3]

(b) Design a first order dynamic compensator A'(s) to achieve the following design
specifications:
(1) The closed-loop system is stable.
(ii) The steady-state error for a unit step reference signal is zero.
(iii) The closed-loop system step response is critically damped.
)

(iv) The steady-state error for a unit ramp reference signal is as small as pos-
sible.

(Hint: In order to simplify the calculations used in your design, you might
wish to consider introducing a pole—zero cancellation. Once you have designed
the compensator pole and zero, you might find it helpful to draw the resulting
root—locus) [12]

K(s)

A 2
9
—
o
S
Y
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5. Consider the feedback control system in the figure below. Here,

and A(s) is the transfer function of a feedforward compensator.

(a) Sketch the Nyquist diagram of G(s), clearly indicating the low and high fre-
quency portions, as well as the real-axis intercepts.
(5]

(b) Set A'(s) = k, a constant compensator. Give the number of unstable closed-
loop poles for all (positive and negative) k.
(5]

(c) Take K'(s) = I. Determine the gain margin.

[5]

(d) Without doing any actual design, briefly describe how a phase-lead compen-
sator,

14 s/wo

Kis) = 14 s/w,

0 < wp < wp,

would affect the gain and phase margins. Your answer should emphasise the
difficulties involved in the design. [5]
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SOLUTIONS (E2.6/18%2-9, Control Engineering, 2004)

(a) Applving Kirchhoff’s law on the loop,

vilt) = Lg(t) 4+ Rq(t) + C~q(1).

(h) The voltage across the capacitor is given by

vo(t) = Cq(t)

() Take ay (1) = ¢(t) and wy(1) = ¢(t). Then,

L

' ] v;(t)
L(
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(d) Taking the Laplace transform of the equations relating v; to ¢ and v, to ¢ in

parts (a) and (h) above,

(*L+ s+ Cgls) = vils)
C(s) = vy(s)

The transfer function is obtained by dividing:

oo e
e vi(s) T 24+ sRLTVH(LC)T!

(¢) Comparing the transfer function (i(s) with the standard second order form

, (LC)™! w2
Gi(s) = Y N T e , 2
s+ sRLT 4+ (LCY) s7 4 20w, s 4wl
It follows that w, = \/+—( and ( = 0.5R % The first specification demands

( = = for 5% maximum overshoot while the second demands E%— =107% It
VoL n

[ollows thaL[R =4 x 10 @ |and 17' =625 x 107 F l The steady state output

is simply G(0) and so

Ya,ss — L.




(a) Using a potential divider rule at the op amp input gives

vels) — va(s) _ R, _.

vo(s) — v,.(8) Ry 4 R !
so that

—vu(s) = —rov,(8) — rvo(s).

(h) At the op—amp output we have

E(s) — v,(s) = Roils) = | va(s) = —%Tvs(s) — Ryils).

(¢) Using parts (a) and (b), the block diagram becomes,

* 1

R,

-, —u Vo
¢ A
E— ] £ ——
2 TS +
™ <

(d) Using the block diagram in part (¢) and a manipulation gives

() — 1y A ol Ry(ts+1) .
vols) = — o T A ) m‘(b)‘

Since both v,.(t) = V. and i(t) = 5 are assumed to be constant, we have that
ro(s) = V. /s and i(s) = 5/s. Using the final value theorem, the steady-state

no-load output voltage Vi, and the full-load output voltage Viy, are given by

. 7’2."‘

‘/' r — —_——V,
NL 1 + I :1

‘/, . /’2:’“ 1 -
ok | —}-'I"]rl v ] +7’1A!)

The voltage drop is obtained by subtracting to get

D

Vv, = Vi = ——— <1
NLTVRL = TS

or 1, > 447" and the minimum value of ry is {r; =4 x 1072,
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3.

(a) The closed-loop characteristic equation is
L4+ A (s)(s)=0= "+ (a+ 1)s* + (a—2)s + (k —2a) = 0.

The Routh array is then

5 1 a—?2
52 a+1 k—2a
. «* + a —2—k

- a4+ 1

| k—2a

For stability, we require no sign changes in the first column. Thus we require
(1) a4+1>0.(2): a?4+a—2>kand (3): k> 2a. Combining the second and
third requirements gives «*+a—2 > 2a or a* —a—2> 0 or (a+ 1){a — 2) > 0.

Since « +1 > 0 from the first requirement, we have and so from

the third requirement.

() The closed—loop system is marginally stable when all the elements of a row of
the Routh array are equal to zero and all the elements in the first column of
the modified array have the same signs.

(i) Taking the fourth row to be zero gives k = 2a. The modified array be-

comes:
5 1 a— 2
52 a+1 0
S a—2
1 10—=a—2

where the auxilliary polynomial is pa(s) = (¢—2)s Thus [a >2and k = “Za’

for marginal stability.
(ii) Taking the third row to be zero gives k = a® + a — 2. The modified array

bhecomes:
s 1 a— 2
52 a—+ 1 @ —a—2=(a+1)(a—2)
s10—=20a+1)
L (a+ D){a—2)
where the auxilliary polynomial is pa(s) = (a + 1)(s* + « — 2) Thus

la >2and k=a*+a — 'ZJ for marginal stability.

(iii) Setting the second row to zero requires « = —1 and k = —2. The charac-
teristic polynomial then is s® — 3s which has an unstable root and so the
closed-loop in this case is not marginally stable.

(¢) The closed-loop is oscillatory of it is marginally stable and if the auxilliary
polvnomial has pure imaginary roots. [t follows from part (b)(ii) that the
corresponds to the case @ > 2 and k = «* + « — 2 where the auxillary poly-
nomial is po(s) = (a + 1)(s* + a — 2). For ps(s) to have a root at j (to
oive a frequency of oscillations of 1 radians per second), we need a = 3. 50

F/, =3and h=3*+3-2= 10.’




(a)

(i) The root-locus plot is shown below. The breakaway points are the real

oot Locus

Imaginary Axis
o

roots of %L) = 0 and are equal to |3 £ V2~ —44, —1.6| The

asymptote is at 130°.

(ii) For critical damping, the closed-loop poles are real and equal. This cor-
responds to the breakaway points. Since the smallest value of k is re-
quired, we need the right-most breakaway point. Using the gain criterion:

b= —G(=3+V2)"' ~0.172.

Let K(s) = k(s —2)/(s—p). We design p,z and k. For zero steady-state error

against a step reference signal, we need an integrator in the loop. So
To simplify the calculation we use the hint and introduce a zero to cancel the
pole at —1. So . The root-locus of the compensated system Go(s) =
i is shown below. The {breakaway points are —3 + V3~ —4.7,—1.31
s(s+2) 1

For critical damping, we place the closed-loop poles at breakaway points. Since

we are required to minimize steady -state error to a unit ramp reference, we

need to ‘ maximize the loop-gain | So we need the left-most breakaway point.

Using the gain criterion: |k = —Go(=3 — \@)'1 ~ 7.46.

Rout Locus.
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5. {a) The Nvquist plot is shown below. The real-axis intercepts can be found by
setting the imaginary part of G(jw) (or 1/G/(jw)) to zero. This gives intercepts

for |w;, = 0. £2v2, 00| and so | G(jw;) = 4.5, —-0.5.,0.

(1) The number of unstable closed-loop poles associated with gain k can be deter-
mined by the number of encirclements by G/(s) of the point —% Thus

0 < k<2 = no unstable poles
k>32 = 2 unstable poles

—% < k<0 = no unstable poles
k< ~f} = 1 unstable pole.

(¢) Since the intercept with the negative real axis is at —0.5 the { gain margin is 2.

(1) The phase-lead compensator has gain close to unity for frequencies below wg
and gain close to % > 1 for frequencies beyond w,. The phase is positive and
large between these two frequencies but insignificant below and above. It fol-
lows that the increase in gain at frequencies above w, tends to degrade the gain
and phase margins. while the phase-lead tends to increase the phase margin,
which is stabilising. Tt is thus important to take care to balance the desta-
bilising increase in gain against the stabilising increase in phase. We should
therefore place w, and wy in the crossover frequency range (when |G(jw)| = 1).

Nyquist Diagrams

Imaginary Axis
(=]
T

Real Axis
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