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1. Consider the feedback control system shown in the figure below. Here, r(s), y(s)
and e(s) represent the Laplace transforms of the reference, output and error signals,
respectively. The plant is modelled by the transfer function

1
(s4+0.5)(s +1)(s + 1.5)

and K '(s) denotes the transfer function of a compensator to be designed.

G(s) =

The Ziegler-Nichols tuning rule is summarised as follows:

e Apply a proportional compensator and adjust the gain until the closed-loop
becomes marginally stable. Let K,, be the value of this gain and 7, be the
period of oscillations.

e The compensator is defined by either:

(i) P: K(s) = 0.5,

(1) PL K(s) = 0.45K,, + 2048/ 1o

1.2K,,/T,
S

(iii) PID: K(s)=0.6RK + + 0.075K 0 Ts.

(a) Evaluate K, and T, for the feedback loop below. [8]

(b) Use the Ziegler-Nichols tuning rule to design a compensator K'(s) (either P, PI
or PID) that satisfies the following specifications:
1. There is zero steady-state error against a step reference.
ii. The steady-state error against a unit ramp reference is as small as possible.

(8]

(c¢) Evaluate the steady-state error due to a unit ramp reference signal for the design

in Part (b).
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2. Consider the voltage feedback arrangement shown below for the speed control of a
DC motor. The motor shaft drives a load with inertia J and is connected to a tacho
generator. Here, v, is the reference voltage, v,, ¢, and R, are the armature voltage,
current and resistance, respectively, v; is the tacho voltage, w is the motor shaft
speed and FE is the generated EMF. Assume that

e The field flux is constant so that that £ is proportional to w and the developed
torque, T'(t), is proportional to i,. Take the constant of proportionality to be
the same and equal to k..

e The Power Op-Amp (POA) has negligible output resistance and dynamics, so
that we can make the ‘virtual earth’ assumption.

e Torque disturbances and friction are negligible so that all the developed torque
is supplied to the load.

o The tacho voltage is proportional to the speed with proportionality constant k;.

In parts (a), (b) and (c) below, all references are to Laplace transforms of signals.

(a) Derive the transfer function G(s)= iu(_s) Assume zero initial conditions. [3]
(b) Derive an expression for v,(s) in terms of vr(s) and w(s). (3]
(c¢) Hence, derive and clearly draw a block diagram representation of the feedback-

loop. Take the reference signal to be —v,(s) and the output signal to be w(s).
Indicate clearly the signals v¢(s) and v,(s) on the block diagram. [6]

(d) Set Ro=R3=R,=J=k.=k;=1. Suppose that a step reference is applied at
t =0 of constant amplitude —V' (that is, v.(¢)=—V,¢>0). Find the values of
V' and R; such that
1. The steady-state value of the shaft speed is equal to 1.
ii. The shaft speed settles to within +2% of its steady-state value in 3 seconds.

[8]
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3. Consider the field controlled motor illustrated in the figure below. The motor shaft
has angular speed w and drives a load with inertia J and frictional damping coeffi-
cient B. The armature voltage, V,, is assumed constant so that the developed torque,
T, is proportional to the field current, i;. Take the constant of proportionality to
be K. The field resistance is £; while the field inductance is L;.

(a) Write the dynamic field loop equation (relating the field current and field volt-
age) and the torque balance equation (relating the angular speed and field
current). (Hint: Your equations should not include T'(¢) or V,.) [5]

(b) Derive a state-variable model in the standard form:
#(t) = Az(t)+ Bu(l),
y(t) = Ca(t).

Take the states to be the angular speed and the field current, the input to be
the field voltage and the output to be the angular speed. [5]

(c) Now take Ly =J =B = K;=1.
i. Derive the transfer function between the applied field voltage and the shaft
speed in terms of R;. [5]

. Find the value of Ry so that when e;(t) is a step input, w(¢) reaches its
steady-state value in the shortest time without overshoot. [5]
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4. Consider the feedback loop in the figure below. Here

1

) = 6T

and KA'(s) is a compensator.

(a) Take K(s) = k where k > 0 is a constant gain. Draw the root-locus accurately
as k varies in the range 0 < k < oo. Your answer should include

i. The centre and angles of the asymptotes.
ii. The range of values of % for closed-loop stability.
iti. The real-axis intercepts. Give both the closed-loop poles and the corre-
sponding k.
iv. The imaginary-axis intercepts. What is the frequency of oscillations when
the closed-loop is marginally stable? (10]

(b) Suppose that
K(s) = K, + Kys

is a PD compensator, where K, and I, are design parameters. Find A7, and
K, such that

1. the closed-loop is stable, and
ii. the two dominant poles have a damping ratio ¢ = 1/4/2 and a natural fre-
quency w, = V2.

Comment on the action of the compensator on the plant. [10]
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5. Consider the feedback control system in the figure below. Here,

and K'(s) is the transfer function of a feedforward compensator.

(a) Sketch the Nyquist diagram of G(s), clearly indicating the low and high fre-
quency portions, as well as the real-axis intercepts.
[5]

(b) Set A'(s) = K, a constant compensator. Give the number of unstable closed-
loop poles for all (positive and negative) K.
[5]

(¢) Take K = 1. Determine the gain and phase margins.

[5]

(d) Without doing any actual design, briefly describe how a phase-lead compen-
sator,

_ L+ s/wo

K(s) = \
v (s) L+ s/w,

0 < wy < wy,

would affect the gain and phase margins. Your answer should include a rough
sketch of the Bode plots of the compensator and emphasise the difficulties in-
volved in the design. (5]

r(s) y(s)
K(s) G(s) >
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SOLUTIONS (E2.6/ISE2.9, Control Engineering, 2002)

(a) To find the critical gain K, we form the Routh-Hurwitz array for the charac-
teristic equation:

14+ 7,0 G(8)=0 = s°+35° +2.755+0.75+ I, =0

52 1 2.75
s 3 0.75 + K,
— s | 2.75 — (0.75 + K,0)/3
59 0.75 + Ky
Setting the third row to zero (for marginal stability):
Ky = 17.5.

To find the critical frequency, we set the auxiliary polynomial to zero {second

row with K, = 7.5): 332+(0.75+7.5):O. Thus s=71/8.25/3 and so

T,=2m/\/8.25/3=3.7889.

(8]

() Since we require zero steady-state error against a step reference. and since ()
15 type 0, we need an integrator in the compensator. Thus we cannot use a
I’ compensator. To ensure the smallest steady-state error against a ramp. we
choose the compensator with the largest value of 11_1)% sK(s). For the PI this

is 54N, /T, while for the PID it is 1.2K,,/T5, which is higher. Therefore we
choose the PID compensator

K(s) =0.6h,,+ 1.2Kpo/sTy+0.075K o Tys =4.5 + 2.3754 /s + 2.1313s.

(¢) The Laplace transform of the error signal is

(s) )
o 11 G(s) K (s)
= es = lim e(t)= lim _orls)
88 t— oo s—=0 1—]—(7'(5)[\’(6)
l'or a unit ramp, r(s) = 1/s* and so
L 1 o
€os — SIE)HO ——SG(S)K(S) = 0.3157.




(a) The developed torque is T'(t) = k.1,(t) and the generated EMF is F(t) = k.w(t).
Since friction is negligible and all the developed torque is supplied to the load. we
have that T'(t) = Jw(t) or ki (t) = Ju(t). However, v,(t) = Rui, (1) + E(l) =

Rt (1) + kew(t). 1t follows that 1,(t) = RLUU‘(f) — ]% w(t). Thus

R,

Rearranging and taking Laplace transforms (assuming zero initial conditions),

ke (%ﬂva(t) — ige—w(l‘)> = Juw(t).

k2 ke 2 ‘e
./'LZ,)(t)+RfZ'Lz)(t):—R—uva(t) = <J3+%Z) w(s)= Z—av(,(a)
S50
o\ ke/Ra .
Y= SRR 31
(b) Making the virtual earth assumption: v;%(lt) + kt%it) + ’U}g) =0, since v4(t) =
lpw(t). Taking Laplace transforms and rearranging,
_ Ry _ R’ ;
va(s) = 7‘{5( vr($)) Ektw(./). [3]
(¢) Using the last equation and the expression for (¢(s), the block diagram becomes,
— Uy S) S s
__(. "R vals) k./R, o)
i Js+ k2[R,
vi(s)
Rl/R2 < kr‘ “ [6]
(d) Putting in the numbers, the block diagram simplifies to
B 0,(3) w(s)
1 .
—] Rl { ST >
Rl <
It follows that
VR, RV (1 1 ) ‘ vV —(Rit1)
(s)= = e Vs w(t) = | — e
(5) b(S+R1—|—1) Rl+1 S 8+Rl+1 w( ) RlJrl < ‘ >

Since e™* < .02, we set 3(R; + 1) = 4 for a settling time of 3 seconds. or

The steady-state value of w(?) is Y and 1t follows that

Ri+1
V=4

for a steady-state value of 1. (8]



3. (a) The field equation is

Lyis(t) + Ryig(t) = eg(t).

Since the applied torque is Kyi;(t), the equation for the shaft torque balance
cquation becomes

T4w(t) + Bult) = Kyif(t).

(h) Let

x(t) = w(t), x2t) =15(t), w(t)=-es(t) & y(t) = w(t).

Then the above equations can be written as

and

[5]

(¢) 1. By either taking the Laplace transforms in Part (a) and eliminating i(s)

or using (/(s) = C(sI — A)™'B in Part (b), we get

W) e
5 - O GE TG TRy

[5]

ii. For the response to reach its steady-state value in least time without over-
shoot, the system must be critically damped, that is, the poles must be real
and equal. It follows that

R; = 1.

[5]



1.

(a) The root-locus plot is shown below.
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. The centre and angles of the asymptotes are |0 = —1 & ¢ = £60°, 1830°.

ii. The characteristic equation and the Routh array are

&3 1 2
. ) s 3 k
735+ 2s+k=0 = 6=k

s

sY k

The range of k for closed-loop stability is therefore

The imaginary axis intercept corresponds to To find the associated
critical frequency, we set the auxiliary polynomial to zero (second row with

k=6): 3524+ 6 =0, or s = jw where |w = /2.

iv. For the real axis intercepts, we search for real roots of (?—[Hﬁ = 3s° +
6s +2 = 0. This gives s = —1 + 1/y/3 and so the real axis intercept
is |s = —1 + 1//3.| The corresponding value of & is found from the gajh
criterion: |k = —1/G(=1 + 1/V/3) = 2.5981. [10]

(h) Write A'(s) = N, + Nygs = Ky(s—z) where z = — K,/ K,;. The required location

of the dominant poles is p,p = —1 & j to give ¢ = 1/v/2 and w, = V2. To
lind the value of = we use the angle criterion: Z(p —0) + L(p+ 1) + Z(p+2) —
L(p —z) = 1807 or 135° 4 90° + 45° — 0 = 180° or # = 90°. Thus z = —1. To

1

find the corresponding gain, we use the gain criterion: iy = R

plp £+ D(p+2)

Hp)p —2)
=—p(p+2)=2 Thus | Ky =2& K, = =Nz = 2.

(p+1)

‘The compensator has cancelled one of the poles of the plant.‘ [10]




5. (a) The Nyquist plot is shown below. The real-axis intercepts are found by setting
Iin[G(jw)]=0. Thus |w;=0,4+V3, 00|50 | G(jw;)=1,—0.125, —0.125,0. (5]

(b) The number of unstable closed-loop poles associated with gain A" can be de-
termined by the number of encirclements by G(s) of the point —1/A". Thus

]() < K <8=stable, K'> 8= 2unstable, —1 < K <0=stable, A’ < -1 =1 unstable

[5]

(¢) Since the negative real-axis intercept is at —0.125, then ’the gain margin is ﬂ

l'or the phase margin we solve |G(jw)| =1. However, the Nyquist diagram is

[5]

inside the unit circle except when w=0. Thus: lthe phase margin is 180°.

Nyquist Diagrams
From: U(1)
T
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(d) The phase-lead has gain close to unity for frequencies below wy and close to =& >
| beyond w,. The phase is positive and large between wo&wp but small below
and above. The Bode plots are shown below. The increase in gain at frequen-
cies above w), tends to degrade the stability margins, while the phase-lead tends
to increase the phase margin, which is stabilising. It is thus important to bal-
ance the destabilising increase in gain against the stabilising increase in phase.

~1.) 5]

We should place w, and wy in the crossover frequency range (|G(jw)

Bode Diagrams
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