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SECTION A [II(3)E 2006]

1. Consider the mapping

T
¥ = — ]
-4

from the z-plane to the w-plane where w = u 4+ v.

(i) Show that the circle z® + y? = R? in the zy-plane maps to the circle
(u — 1) 4+ +? = 2/R?
in the uv-plane.

(ii) Show that if the point (z,y) traverses the circle in the clockwise direction,
then the point (u, v) traverses the circle in the counter-clockwise direction.

(iif) Show that the family of straight lines y = az (a real) in the zy-plane maps
to a family of straight lines in the uv-plane, all passing through a single point,
which is to be determined. '

Determine also the slope of the line in the wv-plane that corresponds to the
straight line y = az in the zy-plane.

2. Use the Residue Theorem to show that

()
?g' zdz s B
c (z=12(z—17)
where the contour C is the circle of radius 3 centred at the origin. What is the
answer when C is changed to be a circle, radius £, centred at the origin?

}[ 2%dz .
— = 2mi,
c (z—1)®

where the contour C is the square with vertices at £2 + 27 and £2 — 23.

(if)

The residue of a complez function f(z) at a pole z = a of multiplicity m is given by

the expression
) 1 dm-—l m
lim | te-am ).

z—a (m -1)!

PLEASE TURN OVER
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3. The compléx function

iz

e
z2(22 +1)(22+9)
has a simple pole at z = 0, two simple poles in the upper half-plane at z = 7 and
z = 31, and two more in the lower half-plane at z = —i and z = —3i.

Show that
(i) the residue at z=01is 1/9,
(ii) the residue at z =1 is —e~1/16,

(iii) the residue at z = 3i is e™3/144.

Now consider the contour integral

j{ iz dz
c 2(22+1)(22+9)’

where C is taken to be a large semi-circle in the upper half of the complex plane of
radius R, with an additional small semi-circle taken below the pole at z = 0.

(iv) Show that the contribution to the above integral from this small semi-circle, in
the limit when its radius goes to zero, is 71/9.

(v) Why is there no contribution to the above integral from the large semi-circle of
radius R in the upper half-plane, in the limit when its radius goes to infinity ? -

(vi) Hence, show that

o (@2 +1) (22 +9) 72¢3

/m sing dz - m(8e® —9e? +1)

The residue of a complez function f(z) at a pole z = a of multiplicity m is given by
the expression

EI—}& (m - 1)!
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4. (i) Use Fourier transforms to show that the Dirac delta-function has an integral
representation of the form

m .
/ e*97 dr = 21(a),
-0
or with 7 and a reversed.

(ii) Hence prove the integral relation between the two functions f(¢) and g(t) and
their Fourier transforms f(w) and g(w)

=] . 1 <
| toswa = 5 [ Ferea,
-0 —00
where * represents the complex conjugate.

(iii) If f(t) = e “oltl and g(t) = cos(Qpt), where Qg and wp > 0 are constant
frequencies, show that

f ” gl cos(Qot) dt = 2
—00 wg + Qg

5. You are given the result

f = dr = .
toe T
(i) Use this to show that

® sinpt +m, p>0
dt = :
—0 t -, P 03

where p is an arbitrary real number of either sign.

(ii) Use the result of the integral in (i) to show that the Fourier transform F(w) of
the function

sin 1t
) = =2
2
is the rectangle function
- _ | 2m, -i<w<i,
fe) = { 0, w<-i i<w.

Sketch f(w) against w.

PLEASE TURN OVER
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6. Two functions of time, f(t) and g(t), have Laplace transforms f(s) = £{f(t)} and
3(s) = L{g(t)} respectively. The convolution product between these functions f * g
is defined by

t
frg = _/D Fw)g(t - u) du
(i) Prove the Laplace convolution theorem

L{f *g} = F(5)3(s),

ﬁ(/:f(u)du) s @

%) = frap

and hence show that

(ii) Show also that if

then
G(t) = i(sint—tcost).

Hence show that for s > 0
£t -—-1— =1—cost — lisint
s(1+ s2)? 2 )

You may assume that L{sinwt} = =¥57.
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7. Consider a two-dimensional region R bounded by a closed piecewise smooth curve C.
Using Green’s Theorem in a plane, choose the components of a vector field v(z,y)
in terms of two differentiable arbitrary scalar functions P(z,y) and Q(z,y) to prove
the two-dimensional form of Stokes’ Theorem

‘//Rk-(curlv)dmdy =% fcv-dr. (%)

R is now designated as the region bounded by the parabola y? = z and the line
y=2z.
Sketch this region.

If v = (z% + y%5), show by direct calculation that

j{ v-de = 0.
c
By evaluating curl v, verify that
f/ k- (curlv)dzdy =0
R .

Green’s Theorem in a plane states that, for a two-dimensional region R bounded by
a closed, piecewise smooth curve C,

f{Pmydz—l—me)dy} f/ (SQ ai)dd

PLEASE TURN OVER
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8. A change of variables from (u,v) to (z,y) is of the form z = G;(u,v) and
y = Go(u, v). Define the Jacobian J of the change of variables in terms of a

2 x 2 determinant.

Suppose that
v

uZ+o2

u
Gi(u,v) = bR and Gs(u,v) =

Calculate J.

Now consider the unit circle u?> + v?> = 1. Show that this change of variables
maps the region R corresponding to the inside of the unit circle to the region S
corresponding to the outside of the same circle.

Show also that the same change of variables maps the outside region S to the inside
region R.

Write down an expression for the integral

/ fR F(z, y) dzdy

in terms of an integral with respect to v and v over a region in the uwv-plane which
should be carefully identified. Hence compute the following integral

4
[fsmdudﬂ

You may assume without calculation that the area of R is .
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9. Let F' = (Fy, Fs, F3) be a vector field and ¢ a scalar field in three dimensions. Define

grad ¢, div.F" and curl F.

(i) Show that
curl (F) = pcurl F + (gradp) x F

Hint:  evaluate 6(;’53) - a(ng} and show that this is the first
4

component of wcurl F+ (grady) x F.

(ii) Hence show that if v = (v1,vs,v3) is a vector such that
v-curlF = 0

then

1 Vg v3

_agmie ¥ &
v - curl (pF) = det 3 By Bz

F, F, F3

(iii) Let k= (0,0,1) be the unit vector in the z direction. Show that

k-curl F =0
if and only if

o _ on,

0y ~ Oz

(iv) Suppose that ¢ is independent of both z and y, that Fy is independent of y
and F3 is independent of z.

Use parts (ii) and (iii) to show that

k-curl(pF) = 0

PLEASE TURN OVER
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10. Suppose that a vector field F(z,y) satisfies

ng-d'r=0
c

for any closed loop C in the plane. Explain how to define a scalar potential ¢(z,y)
for F' and verify that your definition satisfies F = —grad.

Show that if F = —grady then
oR _ o
oz Oy

Verify that this condition is satisfied for the following two-dimensional vector fields
and derive the corresponding potential ¢(z,y) in each case:

(i) F(z,y) = (2z+y, z+2y)
(i) F(z,y) = (32 23°y)

(iii) F(z,y) = (ysiﬁwy, T sin zy)



SECTION B [II(3)E 2006]

11;

(i) Distributor A supplies 87% of the memory chips used by a computer firm and

5% of them are defective. Distributor B supplies the remaining 13%, of which
8% is defective.

(a) Write down the expression for the probability that a randomly selected
chip is defective.

(b) Assuming that two randomly selected chips are both defective, obtain the
probability that both are from Distributor A.

Suppose a manufacturer of memory chips observes that the probability of chip
failure is p = 0.05. A new procedure is introduced to improve the design of
chips. 200 chips are produced using this new procedure and each is tested.
We assume that these 200 tests are independent and each chip has the same
probability of failure. We set the rule that we would accept the new procedure
if 3 or fewer chips fail. Let

Hy: p =005 and H;: p < 0.05.
Carefully define the Type I error and compute its probability.

[Hint: use the Poisson approzimation to the Binomial distribution.]

12. A computer network performance indicator X is modelled as a random variable with

(1)

probability density function

z/8 if 0<z <2,
fx(z) = <k if 2<z <4,
(6—1x)/8 if 4<z<6

Find the value of the constant k.

(ii) Sketch the pdf.
(iii) Calculate the expected value E(X).
(iv) Calculate the variance var (X).

(v) Calculate the probability that the network performance indicator takes a value

that does not exceed 5.

END OF PAPER
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Probabilities for events

For events A, B, and C P(AUB) = P(A)+ P(B)- P(ANB)

More generally P(UA4;) = Y P(A)—Y P(AiNA)+Y P(ANANA)—--
The odds in favour of A P(A)/ P(4)

Conditional probability P(A|B) = %‘@- provided that P(B) >0
Chain rule P(ANBNC) = P(A)P(B|A)P(C|ANB)
Bayes’ e PAIE = s 11(313;&)) P(B[3)

A and B are independent if P(B|A) = P(B)

A, B, and C are independent if P(ANBNC) = P(A)P(B)P(C), and
P(ANB) = P(A)P(B), P(BNC) = P(B)P(C), P(CNA) = P(C)P(4)

Probability distribution, expectation and variance

The probability distribution for a discrete random variable X is the complete set of
probabilities {p,} = {P(X = z)}

Expectation E(X) = pu = Y ap,

T

1
Sample mean T = = Z:ck estimates p from random sample z1,zs,...,2,
k
Variance var(X) = o0® = B{(X—p)’} = E(X?) — u? where E(X*) =" 2%,
_ ) 1 . 1 A . 5
Sample variance s§* = Ty — — Zl‘j estimates o
fh— 1 %% n\%;
Standard deviation sd(X) = ¢

If value y is observed with frequency n,
”22%: Zﬁfk:Zyﬂy: Zmi___zyzny
v k y k y

For function g(z) of z, E{g9(X)}= Zg(m)px

=

— o\ ® ' 1 i —Z\°
Skewness () = E(Xg ) is estimated by o) Z(m ‘T)

e

= i
o)

. . ) . 1 ;=T %
Kurtosis (3, = E( ) —3 s estimated by Z( ) —3



Sample median Z. If the samplevalues zy, ..., z, areordered () < z(p) < --- < Ty

Z = Zap) fnisodd, and T = 3 (z@ + m(an-s)) if n is even.
a-quantile Q(c) is such that P(X < Q(a)) = «

Sample a-quantile @(a) is the sample value for which the proportion of values < @(a) is

o (using linear interpolation between values on either side)

The sample median Z estimates the population median Q(0.5).

Probability distribution for a continuous random variable

The cumulative distribution function (cdf) Fle) = PLX< 2] = /z f(@o)dzo
Tog=—00

The probability density function (pdf) ) = %ﬁf)
EX) =p= ]_O;xf(s:)dx, var(X) = o = E(X?) - u?
where  E(X?) = [ : 2% f(z)dz
Discrete probability distributions
Discrete Uniform Uniform (n)
px=% (z=1,2,...,n) p=3(n+1), =5 (n*-1)

Binomial distribution Binomial (n,6)

P = (n) 1-6)"* (z=0,1,2,...,n) p=mnb, c2=nf(1-9)
z

Poisson distribution Poisson (A)
AZe~
Tl

B (=0,1,2,...) (with A>0) =X, gr=A

Geometric distribution Geometric (6)

B 1, 1-96
= {1=0)"8 (m==1,2,8,.0:) p=g. 0 =—0
Continuous probability distributions
Uniform distribution Uniform (a, §)
i
—— (a<z<f), p=(a+p0)/2,
f@) = P
0 (otherwise). ot = (8- a)?/12.



Exponential distribution Exponential (A)

Ae~ AT (0<z <), B =1/X;

0 (—0<z<0). gt =T/A.

Normal distribution N (u,o?)

fl@) = \/;r?exp{—%(x;”)z} (—0 < z < )

Standard normal distribution N (0,1)

If X is N(u,02), then Y = bt 5 N(0,1)
g

Reliability

For a device in continuous operation with failure time random variable T' having pdf
f@t) (>0)
The reliability function at time ¢  R(t) = P(T >t)

The failure rate or hazard function h(t) = f(t)/R(t)
t

The cumulative hazard Hit) = f h(to)dty = —In{R(?)}
0

The Weibull(e, §) distribution has  H(t) = gt*

System reliability

For a system of k devices, which operate independently, let
R; = P(D;) = P("device i operates”)
The system reliability, R, is the probability of a path of operating devices

A system of devices in series operates only if every device operates
R=PDiND;N---NDg)=RRy--- Ry
A system of devices in parallel operates if any device operates

BP0, U w00 sl ~ T B)ossl =)

Covariance and correlation

The covariance of X and Y cov(X,Y) = EXY)-{EX)H{EX)}



10.

11,

From pairs of observations (z1,91), ..., (Tn,¥n) Sey = 3 Tk¥r — %(Z%)(Z%)
% - r

1 1
Soe = Zwi—;(ng)i Sy = Zyi—;(Zyj)z
k : j

k
Sample covariance Szy = L Szy estimates cov (X,Y)
—1 X,7)
Correlation coefficient p = corr(X,Y) = dc(r;)(- s’ ()
. - Szy .
Sample correlation coefficient F = estimates p
Szzyy

Sums of random variables

E(X+Y) = E(X)+E()
var (X +Y) = var(X)+var(Y)+2cov(X,Y)

cov (aX +bY, cX +dY) = (ac)var(X)+ (bd)var (Y) + (ad + bc) cov (X,Y)

If X is N(u1,0%), Y is N(ug,02), and cov (X,Y) =,
then X +Y is N(u + po, 02 + 0% +2c)

Bias, standard error, mean square error

If ¢ estimates @ (with random variable T giving t)
Bias of ¢ bias(t) = E(T)—8
Standard error of ¢ se (t) = sd (T)
Mean square error of t MSE(t) = E{(T —6)’} = {se(t)}* + {bias(t)}?
If T estimates 4, then bias(Z) =0, se(Z) =o/v/n, MSE(Z) =o%/n, s (Z)=s/v/n

Central limit property if m is fairly large, T is from N(u, 0/n) approximately

Likelihood

The likelihood is the joint probability as a function of the unknown parameter 6.

For a random sample z1,Zs, ..., Z,
00; T1, %2, ..., Tn) = P(Xy=12,]0) --- P(X,=1,|0) (discrete distribution)

£6; 1,22, ,Zn) = flz1]0)f(z2|0)--- f(zn|8) (continuous distribution)

The maximum likelihood estimator (MLE) is @ for which the likelihood is a maximum.




12.

13.

14.

Confidence intervals

If £1,2,,...,2, are a random sample from N(y, 0?) and o2 is known, then

the 95% confidence interval for uis (Z — 1.96%, T+ 1.96%

If o% is estimated, then from the Student t table for ¢,_; we find to = t,_1 005

'S s
The 95% confidence interval for p is (T — to—=, T + tg—=
0 H ( 0\/5 0\/5)

Standard normal table

Values of pdf ¢(y) = f(y) and cdf ®(y) = F(y)

y o(y) @@ | v 4 20@)| v ¢@) W) v 2
0 399 5 9 266 .816 |1.8 .079 .064 | 2.8  .997
1 397 540 [1.0 242 841 |19 .066 .971 |3.0  .999
2 301 579 |11 .218 .864 |2.0 .054 977 |0.841 8
3 .381 618 |12 .194 .885 |21 .044 .982 |1.282 .9
4 368 .655 |13 171 .903 |22 .035 .986 |1.645 .95
5 .352 601 |14 .150 .910 |23 .028 .980 |1.96 .975
6 .333 726 |15 .130 .933 |24 .022 .992 | 2.326 .99
7 312 758 |16 .111 .945 |25 .018 .994 |2.576 .995
8 290 .788 |17 .094 955 |2.6 .014 .995 |3.09 .999
Student t tablcj

Values t,,, of = for which P(|X| > z) = p, when X is ¢,

m p=010 005 002 001 [m p=010 0.05 002 0.01
1 6.31 1271 31.82 63.66 | 9 183 226 282 325
292 430 696 992 |10 181 223 276 317
235 318 454 584 |12 1.78 218 268 3.05
213 278 375 460 |15 175 213 2.60 295
202 257 336 4.03 |20 1.72 209 253 2.85
1.94 245 314 371 |25 1.71 206 248 278
189 236 3.00 350 |40 168 202 242 270
186 231 290 336 |co 1.645 196 2326 2576

O~ W N
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Chi-squared table

Values x} , of z for which P(X > z) = p, when X is x} and p = .995, .975, etc

.995

975

.05

.025

.01

.005

k

.995

975

.05

.025

.01

.005

O W ~N O Ul AW N |

| e S S G
D N O

.000
010
072
207
412
676
.990
1.34
113
2.16
3.07
4.07
5.14

.001
.051
216
484
.831
1.24
1.69
2.18
2.70
3.25
4.40
5.63
6.91

3.84
5.99
7.81
9.49
11.07
12.59
14.07
15.51
16.92
13.31
21.03
23.68
26.30

5.02

7.38

9.35
11.14
12.83
14.45
16.01
17.53
19.02
20.48
23.34
26.12
28.85

6.63
9.21
11.34
13.28
15.09
16.81
18.48
20.09
21.67
23.21

26.22

29.14
32.00

7.88
10.60
12.84
14.86
16.75
18.55
20.28
21,95
23.59
25:19
28.30
31.32
34.27

18
20
22
24
26
28
30
40
50
60
70
80
100

6.26

7.43

8.64

9.89

11.16
12.46
13.79
20.71
27.99
35.53
43.28
51.17
67.33

-8.23
9.59
10.98
12.40
13.84
15.31
16.79
24.43
32.36
40.48
48.76
51{.15
74.22

28.87
31.42
33.92
36.42
38.89
41.34
43.77
55.76
67.50
79.08
90.53
101.9
1243

31.53
34.17
36.78
39.36
41.92
44.46
46.98
50.34
71.41
83.30
95.02
106.6
129.6

34.81
37.57
40.29
42.98
45.64
48.28
50.89
63.69
76.15
88.38
100.4
112.3
135.8

37.16
40.00
42.80
45.56
48.29
50.99
53.67
66.77
79.49
91.95
104.2
116.3
140.2

16.

17

The chi-squared goodness-of-fit test

The frequencies n, are grouped so that the fitted frequency 7, for every group exceeds

about 5.

X% Z (ny — fiy)*

is referred to the table of x? with significance point p,

where k is the number of terms summed, less one for each constraint, eg matching total

frequency, and matching T with p.

Joint probability distributions

Discrete distribution {pzy}, where p, = P{X =z} n{Y =y}).

Let

pmo=P(X=-T')n
Daa = Zp,,y, and P(X=$]Y=y)
y

and p., =P(Y =1y),

then
Pay

ey




Continuous distribution

Joint cdf F(z,y) = P{X <z}n{Y <y}) = /z:_m /: f(zo0,90) dzo dyo

0=—00
2
Joint pdf flzy) = %ﬁ;ﬁ)
Marginal pdf of X fx(z) = /_C: f(z,90) dyo
Conditional pdf of X given Y =y fX[Y(xly) = J;c($(’$) (provided fy(y) > 0)
Y

Linear regression

To fit the linear regression model y = a+ 6z by 7, = @+ Bz from observations

(z1,%1), -+, (Tn,¥n). the least squares fit is
a = g_fB: B = Swy/Sxx
52
The residual sum of squares RSS = S, — Sxy
TI
— RSS n—2 — .
S i p o? is from x2_,
E@) = a, E@) =8
2 = 2 = T
var (@) = TLESZUQ ; wr{g] = 5 cov(@,8) = - 3:: a?
. ~ - 1 (z—7)
Ue =0 + Bz E(@.) =a+ Pz, var () = {E ( 5 )} 2
L B_ﬁ - e are each from ¢
@' =@’ % (2.)

(1 -1 -1 1 -1 1 1 -1
1 4 =1L —1 % =1 & 14
T = = ==f f = 3
< - y S T SR (S U, . . |
T = =f 1 =1 =1 i
I T =] =1 1 T = =i
i =1 I =1 1 =1 I =1
\1 1 1 1 1 1 1 1)
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2 Year Engineering Mathematics II Solutions and Marking Scheme (J Stark) 4

C4
5 9 ¢ 99
grad ¢ = [&,ay,az)
dF, oF. dF.
div F = L2 R ol S il
A" ay az
i j k
curl F = d 2 2 [fﬁ_aﬁ’fﬂ_iﬁ oF, Oof
& o & dy &'k & & &
R KR B

where , j and k are unit vectors in the x, y and z directions respectively.

2 Marks

Only one or the other form of curl needs to be given

2) The first component of curl gF is by above

o(pF,) JeE,) _ oF, _JF, o op
ady oz ¢ dy o=z * 31:3_ E’_Fz
oF, OF, |, :
Now ¢ | —=——=2 | is the first component of ¢ curl F whilst
dy oz

i j kR
dp Jp 9
dg)xF = R
(gradg) x ox dy 0=z
. E B

so that %F, - g_:p F, is the first component of (grad ¢) x F.
Z

We can either repeat the same calculation for the second and third components, or argue
that the same relationship must hold by permuting F,, F, and F;.

b) We have

v.(pcul F) + v.((grade) x F)
= pv.curlF + v.((gradg) x F)
= v.((grad ¢) x F)

since we are given v.curl F = 0.

v.(curl ¢F)

The standard formula for the triple product is

3 Marks

2 Marks

| Mark

| Mark
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i j k a a, a,
a.(bxc) = (51342353)-61 bz 63 i bl bz 53
4 4 5 e ¢ ¢
so that
v, v, U
= dp Jp OJp
v.(curl ¢F) = v.((grad ¢) x F) = b e A
£ dx dy 0z
FE F K
as required.
c) We have
oF; OF, oFf JF OF, OF
E.(curl = 0,0,y =2-—=2, 2L -3 2__1
wan = oon(3-28-20-5
. B _HK
& d
Hence k.(curl F) = 0 if and only if a—Fz- - 25- =0
& Oy
% %,

d) If ¢ is independent of both x and y then
dx ody

oF;
—L =y, %=0,sothat

If F, is independent of y and F, is independent of x then Y .
nH_FH L
ko oy

and hence &.(curl F) = 0 by c)

Thus by b)
0 0 1
k.(curl oF) = 0 0 %‘E = 0
F F K

2 Marks

2 Marks

| Mark

2 Marks

i
N )

i)
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C5 Suppose that for any closed curve C we have

§ F.dr 0
c

Suppose that C, and C, are any two paths with the same end points @ and &:

R N R A TE SR W O W I I O b D O O AR S IS A o 4
NASNAAAAN LNV L Hr i SREr LS NONNNWNANVAANV VL LR RS
B T S N W S St B T T T O T T O T T T I A A
NARNSANMNNAANANNVNES I Nt St r s sl \\\\\\\\\\\\\||j T I B B A e
N - A VR SV P T R s N T L A )
MARRN AN MR L b CERA AL LEA R ties

L e P

. e e T T T L4

—————
_—————

e

Let C be the path consisting of traversing C, from a to & and then returning via G, as in
the above figure on the right. Thus

0 = §F.dr = I F.dr - F.dr
c o G,
and hence
j F. dr = F.dr
G G

for any two paths C, and C, with the same end points. Hence .[c F.dr is independent of the
path C, and only depends on its endpoints.

3 Marks

The diagrams are not required.

. " N O 0 T O T W T O O O A R A A A B P

fix an arb: ASE  NMNNNAANV LY Ltit1tteeere

To construct the potental @, an arbitrary bas tt‘:tt‘tts“stit}:;””””””
. — A v B |

point 7, and set ¢(ro) = 0. Then, given any other 3X31yiivi*'''11}00770000227

1] R ) T

point » = (x,y), choose any path C from 7, to r and ZZIuilt o il

e L - F LSS

define TEIaa . Ll s

————— B ®ip ot
———— e B gt
————— . . P

1

o(r) - -fc FE.dr

By above, the right hand side is independent of the
choice of path.

e
R ]

T LN

2 Marks

The diagram is not required.

To show that gradg = —F choose r, = (0,0) and a path from 7, to r made up of vertical and
horizontal segments Cy 2nd Cr (see figure below). Parametrize each of these by z. Along Gy,
we have x = 0 and F.dr = F,(0,1) dr. Thus

¥y
_[ Fdr = I F,(0,0) dr
&} 0
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NENANSENUA ANV VU PR Rt L L Ll

= an NMRASNMLAALL VLA O (T S VAT SF A g

Alonngwchachdr thr,y)df dso \.\\\\\\\\\\\\\].:::uuux/zx?/

B VO VL VO W W 1 O O O I A A I A 0 O P

MERENARNAESY AV LS ERR I DR B O B A AV

x e T T S ) -E? RS T

[ Rar = jFl(r,y)dr RN F s

c, 0 e " v rrr
Thus

il

5 x
() [ rona - |Rena

3]

Differentiating with respect to x wWe note that the first
term is independent of x, so that

o A jz«" Lyd = -Fyx
2 (%) = ds (L) HEN))

2 Marks

The diagram is_not required.

Similarly, taking a path consisting first of a horizontal segment and then a vertical one gives

x y
oo = - [ERGoE - [ Rese @

Differentiating with respect to y

op 0 JJ‘ _
—(x, = -—| B&YIY = -FRkxy)
ay (x y.) ay y PACEH] PAS)
I Marlk
Suppose that F = — grad ¢. By the equivalence of the two mixed second partial derivatives
of @ we have
F, By = TR = o0
ox ox\ dy dxdy dydx
A £ 31
dy \ ox oy
as required
3 Marks
a) Suppose F = (2x+y,x+ 2y). Then
a—‘F--z- = 1 — ﬂ
o o
as required. To compute ¢ we can use either Eq. 1 or Eq. 2. Here we choose to use Eq. 1:
y x
o(x,y) = -J 2tdt - I 2t+y di
0 0
= Foxy-F
3 Marks

Any other method which gives a solution that differs from the one above by a constant is acceptable.
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2% Year Engineering Mathematics II Solutions and Marking Scheme (J Stark)

b) Suppose F = (3x%%,2x’y). Then

oF, dF,
i = 6% = —_—
o % P
as required. Again, we compute ¢ using Eq. 1:
'y x
o(x,y) = - | 0dr - I 3y di
0 0
= fyz

3 Marks

Any other method which gives a solution that differs from the one above by a constant is acceptable.

c) Suppose F = (ysinxy,xsinxy). Then

oF, . oF,
—_ n + 08 = —
= sy xycosxy %

as required. Again, we compute ¢ using Eq. 1:

Y X
o(x,3) —J 0dr - j ysinmy dr
0 0

= -1 + cosxy

Since the potential is only defined up to constant of integration, the -1 can be dropped.

3 Marks

Any other method which gives a solution that differs from the one above by a constant is acceptable.
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Solutions

" Note: U means UNSEEN

11

12.

(¥
(a) Define the events A = {chip is from Distributor A}, B = {chip is from Distributor
B} and D = {chip is defective}, then

P(D) = P(D|A)P(A) + P(D|B)P(B) = 0.87 x 0.05 + 0.13 x 0.08 = 0.054

(b) Define the events E = {both chips are from Distributor A} and F ={both chips
are defective}, then

P(ENF) (0.87 x 0.05)2
P(F)  (0.87 x 0.05+ 0.13 x 0.08)2

P(E|F) = = 0.651

(ii) A Type I error occurs when the null hypothesis Hj is rejected but Hy is true.
From the assumption that the tests are independent and all have the same failure
probability, we have that

3
2
P( reject Ho | Hy is true ) = P(X < 3;p=0.05) = > ( 20) (0.05)%(0.95)200—*
k=0

Since n is large and p is small, we can use the Poisson approximation with A = np =
200 x 0.05 = 10. Therefore the required probability is

3
10%
-10 _
E e o =0.01

k=0

1@
Ell~x
12

= G

(a) In order to find & we solve the following equation with respect to k:

1“/ x(z)d —1/2 dx-l—k/4d +—1f6(6— )d ——l+2k+—1—>k——l
—_— = == —_— =
fx(z)dx ; T ; T 5/, z)dz

(b) The pdf looks like a trapezium
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(c) The expected value is
L[ . i 3%
E(X):/mfx(m)dx=§£ xﬂdx+1£ 5*;dx+§/‘i m(6—x)d;g=§+§+6=3

(d) We need to compute Var(X) = E(X?) — {E(X)?},

1 r2 104, 1/ 1 14 11 32
2y 2 —_ 3 o 2 i 2 - — — — _ = —
E(X)—fz:dm Sji;xdx+4f2xdx+8/4m(6 z)dz 2+3+2 3

Var(X)=3?2—9=

| on

(e) The required probability is

5 6 6
P(X55)=/0 fx(x)dx-—-lﬂ-/; fx(m)dle*-sllfs(6—$)dx=1——1—16=%



