Macke Cooy

Paper Number(s): E1.9A

IMPERIAL COLLEGE LONDON

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING
EXAMINATIONS 2005

ISE Part I: MEng, BEng and ACGI

PRINCIPLES OF COMPUTING AND SOFTWARE ENGINEERING (PART A)
INTRODUCTION TO COMPUTER ARCHITECTURE

Wednesday 8" June 2005 2:00pm

There are THREE questions on this paper.

Question 1 is compulsory and carries 40% of the marks.
Answer Question 1 and EITHER Question 2 (carrying 60%)
or Question 3 (carrying 60%).

This exam is open book

Time allowed: 1:30 hours.

Any special instructions for invigilators and information for candidates are on
page 1.

Examiners responsible:

First Marker(s): Clarke, T.
Second Marker(s): Demiris, Y.K.

Students may bring any written aids into this examination.

Question 1 is compulsory, and carries 40% of the total mark, this
equals a time of 36 minutes.

Answer EITHER Question 2 OR Question 3, each of which carries
60% of the total mark, corresponding to a time of 54 minutes.

ih1.9 Section A, E2.19]

Question 1 is compulsory

a) Convert into a decimal integer or rational number each of the following
hexadecimal words, interpreted as specified.

(1) 0xcde2, 16 bit unsigned
(11) Oxfde2, 16 bit signed
(11) 0x90600000, IEEE 754 floating point.

b) Write in assembler a length optimal ARM assembler fragment which
implements the following pseudo-ccde, assuming the comparison to be
signed:

if rO < r9 + 5 then »vl1 := r2-r3 else rl := rd+r5

[8]

¢) Noting that 2159 = (128-1)*(16+1) , determine a sequence of ARM data
processing instructions that will set r1 equal to 2159*r 0 in two machine
cycles leaving all other registers unchanged.

[6]

d) Determine the changes to registers and/or memory locations resulting from
each instruction in the ARM interrupt service routine (ISR) shown in Figure
I.1. Explain the use of r13 and hence the overall function of the code. Write
an optimised version of this code fo- use with the ARM Fast Interrupt (FIQ).
[10]

¢) Trace through execution of code fragment COPYLOOP in Figure 1.2 when
the initial value of r2 is 9, giving the sequence of conditionally executing
instructions and stating in each case whether the instruction condition is true.
You may assume that, when the instruction condition is true, branch
instructions take 2 machine cycles, multiple register load and store
instructions with » registers in their masks take n + 1 machine cycles, and all
other instructions (including any wih instruction condition false) take 1
machine cycle. Determine the numter of machine cycles taken by the
COPYLOOP loop when it iterates » times (n > 1). Hence or otherwise
determine the asymptotic limit for large n of the ratio of number of memory

bytes written to the number of mactine cycles used by this code fragment.
(10]

STR 0, [rl3], #1
LDR r0, TIME

ADD rO, r0, #1

STR r0, TIME

LDR r0, [rl3, #-11!
SUBS pc, rld, #4

TIME % 4
Figure 1.1
COPYLOOP SUBS r2, r2, #8
A LDMPLIA r0!, {r3-rl10}
B STMPLIA rl!, {r3-rl0}
C BPL COPYLOOP
Figure 1.2

[1:1.9 Section A, E2.19] Page 1 of 3

The subroutine PARITY is shown in Figure 2.1.

a) Which registers are changed as the result of execution of PARITY? Indicate
how, by the addition of appropriate instructions, the registers r0 - r13 can
be preserved across the subroutine call. Specify precisely where in the
PARITY code the additional instruc:ions must be inserted, and what these

are.
[15]
b) The code between PA and PB calculates a result r4 = f(r3). Describe the
function f.
[15]
¢) State precisely in what way PARITY modifies the contents of memory, using
where necessary the function f from part b.
[15]
d) Write an alternative to the code between PA and PB using a lookup from a
256 byte constant table in memory to speed up execution. You need not
provide code to initialise the table, or a definition of the table in assembler,
but must specify precisely the table's contents.
[15]
PARITY ADR r0, BUFFER
MOV rl, #0
MOV r2, #0
MOV ‘r7, #0
Ll LDRB r3, [r0,rl]
EOR r7, r7, r3
PA
MOV rd, #0
MOV r5, r3, 1lsl #24
L2 MOVS r5, r5, 1lsl #1
ADDMI r4, rd, #1
BNE L2
AND rd, rd, #1
PB
AND r3, r3, #&7f
ORR r3, r3, rd, 1lsl #7
EOR r7, r7, r3
STRB r3, [r0,rl]
ADD rl, rl, #1
CMP rl, #128
BNE Ll
STRB r7, [r0,rl]
MOV pc, rlé
BUFFER % 129 ;129 byte memory buffer
Figure 2.1

[1-1.9 Section A, E2.19] Page 2 of 3

a) Write paragraphs of no more than 50 words which answer each of the
following questions:

(1) What is an Instruction Set Architecture?
(3]
(1) How do instructions in the ARM Instruction Set Architecture support
the implementation of stacks.
[4]
(1) How does the mechanism of shadow registers in the ARM Instruction
Set Architecture enable transparent handling of IRQ mode interrupts.
(3]
b) Draw a diagram illustrating how the bits of 10, r1 and the Carry status bit
change after the execution of the ARM code fragment in Figure 3.1. Write in
ARM assembler a subroutine REVERSE, using an ascending stack in which
the register r13 points to the highest memory word used by the stack. On
exit register 0 must be set equal to its value on subroutine entry but with
bits reversed, so that bit # becomes bit 31- n and vice versa. All other
registers are unchanged.
[20]
¢) A CPU with 8 bit data bus uses a write-back direct access data cache to speed
up its access to main memory. The cache contains only 1 line of length 4
bytes. The data memory usage of a program consists of 5 byte pushes,
followed by 5 byte pops, on an asceading stack, where the first stack location
written has address hexadecimal 0x100. You may assume that instructions
are fetched from a separate instruction memory, and that this process does not
affect the data cache.
(1) What is the total size, in byles, of the data cache? Assuming that the
CPU address bus is 20 bits in length, determine the (possibly empty)
sets of bits in the CPU addrzss corresponding to the cache tag, index,
and select fields.
(8]
(1) Determine the sequence of data read and write addresses issued by
the CPU to the data cache during the program execution.
[4]
(111) Assume initially that valid bits for all data cache lines are false. Trace
through sequence of CPU data operations specified in part (ii)
indicating the sequence of main memory reads and writes that are
required, and the state of deta cache valid and dirty bits after each
CPU data operation.
[18]

MOV r0, r0, rrx #1
ADCS rl1, rl, rl

Figure 3.1

H1-1.9 Section A, E2.19] Page 3 of 3

i%i’l 4 "'(_f’ ¢ "/Q‘U
SOLUTIONS ~ _ z2.(a[¢g| .9 &< A

Tume L oo &

Question 1

a) Determine the numbers represented by the hexadecimal bit-pattern
0x90003001 when interpreted as specified.

(i) Oxc4e2, 16 bit unsigned
(ii) Oxfde2, 16 bit signed
(iii) 0x90600000, IEEE 754 floating point.

(i) 50402
(ii) -542
Giii) 217 %175 =-4.42%107
b)
ADD rl0Q, r9, #5
SUB r0, rl0
SUBMI r0, r2,r3
ADDPL r0, r4, r5
) ADD rl, r0, r0, 1lsl 4
RSB rl, rl, rl, 1lsl 7
d) The first instruction stores r0 on the stack — notice this is the IRQ stack since
the interrupt will have swapped to a shadow r13. The next three instructons
load r0 from a word in memory, increment it, and save to memory. The
penultimate instruction restores the old value of r0. The final instruction
returns from the interrupt swapping back to user registers.
Note that the save & load are needed because 10 is not shadowed. In an FIQ
there are extra shadow registers avzilable. One of these (r8-r12) could be
used instead of r0 in which case the r0 save/restore would not be needed. In
fact the value of TIME could be kept permanently in the FIQ register so
reducing the FIQ to just 2 instructions.
¢)
Execution if r2=9. Condition true unless otherwise specified.
COPYLOOP
A
B
C
COPYLOOP

A (condition false)

B (condition false)

C (condition false)
Time taken is 1+9+9+2 cycles for all iterations other than the last, or
1+1+1+1 cycles for last iteration only. So t =21*n-17. 8 words => 32 bytes
are transferred each iteration, so asymptotically 32/21 bytes are transferred
each cycle.

'F1.9 Section A, E2.19] Page } of 4

SOLUTIONS

Question 2
a)
r0,r1,r2,r3,rd,r5,r7 changed.
STMED r13!,{r0,r1,r2,r3,r4,r5,r7} ; insert before first instruction

LDMED r13!,{r0,r1,r2,r3,r4,r5,r7} ; insert before MOV pc, r14,
; or add 15 to register list & replace the MOV pc

b)
fcalculates the xor of the bottom 7 bits of 3, and sets the bottom 7 bits of
r4 = r3, and the top bit equal to th:s xor (the 7 bit parity).

¢)
Bytes BUFFER — BUFFER+127 are modified as mem([x] « f{mem[x]). Byte
BUFFER+128 is set to the 8 bit bitwise xor of all the bytes from BUFFER to
BUFFER+127.

d)
ADRrl, TABLE

LDR r4, [r1,r3]

Byte i of TABLE initialised to contain f{i)

'E.1.9 Section A, E2.19] Page ¥ of 4

SOLUTIONS

Question 3

a) An ISA is a precise definition of the operation of a CPU at the level of
machine instructions which defines the CPU registers, the function, but not
timing, of each instruction and also the function (but not timing) of interrupts
and exceptions.

The ARM ISA provides multiple register load & store instructions, which
contain a register mask allowing any subset of the 16 ARM registers to be
loaded or stored from successive locations in memory as determined by
another of the registers. The 4 types of stack: ascending/descending and SP
full or empty, each have corresponding versions of these instructions:
LDM/STM suffix EA,ED, FA, FD SP points to empty/full location, stack
grows Ascending, descending. Furthermore, each LDM/STM instruction can
either update the register used as stack pointer, or leave the SP unchanged as
when accessing data on the stack.

[RQ mode shadows r14 & r13 & also has a register which saves the user
CPSR. The IRQ mode r13 points to a separate IRQ stack allowing interrupt
code to execute safely independent of user code. Other registers can be saved
& restored using this stack as necessary, and the user instruction stream
restored by restoring the CPSR from the IRQ SPSR, and the user pc from the

IRQ r14.

b)

REVERSE STMFA r13!, {rl,r2}
MOV r2, #32

REV1 MOV rQd, r0, lsr #1
MOV rl, rl, lsl #1
SUBS r2, r2, #1
BPL REV]

LDMFA r13!, {rl,r2,rl5}

[E1.9 Section A, E2.19] Page § of 4

SOLUTIONS
¢)
(1) size 4 bytes, select A1:0, tag A19:2, index has no bits.

(11) (all in hex) W100, W101, W102, W103, W104, R104, R103, R102, R101, R100.
(R=Read, W=Write)

(111) There 1s only one cache line, it is always (after the first op) valid.

Data Valid Dirty Memory

op operation

W100 1 1 R100-103

w101 1 1

w102 1 1

W103 1 1

w104 1 1 W:100-103
R:104-107

R104 1 1

R103 1 0 W104-107
R:100-103

R102 1 0

R101 0

R100 1 0

‘B 1.9 Section A, E2.19]

Page ?461"4

Paper Number(s). E1.9B

IMPERIAL COLLEGE LONDON

DEPARTMENT OF ELECTRICAL AND EILECTRONIC ENGINEERING
EXAMINATIONS 2005

ISE Part I: MEng, BEng and ACGI

PRINCIPLES OF COMPUTING AND SOFTWARE ENGINEERING (PART B)
OPERATING SYSTEMS

Wednesday 8™ June 2005 2:00pm

Corrected Copy
Q 1 °) .

There are TWO questions on this paper.

Answer ONE question.
This exam is CLOSED BOOK

Time allowed: 1 hour

Any special instructions for invigilators and information for candidates are on
page 1.

Examiners responsible:

First Marker(s): Demiris, Y. K.
Second Marker(s). Shanahan, M.P.

® University of London 2005

E1.9 - SECTION B: Operating Systems {1 hour]

Answer ONLY ONE of the following two questions

QUESTION 1:

(a)

(b)

Describe the MFQS (Multilevel Feedback Queue Scheduling)
scheduling algorithm and list its advantages and disadvantages [3]

Consider the following set of processes, with their corresponding
duration, arrival times, and priority levels [higher numbers indicate
higher priority}:

Process | Arrival time {ms) Duration (ms) Priority level
A 0 3 4
B 3 4 3
C 4 4 2
D 5 2 5
E 8 2 6

Show the order of execution (including timing information) of the
processes if the scheduler implements the following scheduling
algorithms:

(1) Priority-scheduling without preemption [3]
(i) Priority-scheduling with preemption [3]
(iif) Round-Robin with a time quantum of 4ms [3]

For each of the algorithms calculate the average waiting time, and
the average turnaround time.

In the “dining philosophers” synchronization problem, five philosophers (P)
need to eat, with only 5 chopsticks available to them, arranged as shown
in the figure below. Eating requires two chopsticks; a philosopher can

only pick one chopstick at a time, and only chopsticks located next to

him/her.
P p
O10

~ _
P O/O\O p
P

Describe how can you ensure that a deadlock will not occur in this
situation, and explain why your solution guarantees that. [4]

In the context of page replacement algorithms, describe the Optimal Page
Replacement, and the Least Recently Used (LRU) page replacement
algorithms and list their advantages and disadvantages [4]

E1.9 - section B: Operating systems Page 1 of 2

b~ 20p (c) A system has 45 instances of a resource type and there are
G4 .C.

QUESTION 2:

(a) Using semaphores, describe how can you enforce that the critical
section of a process A will always be executed before the critical

section of a process B.

(b) In the context of a memory paging system, consider the following

scenario:

Starting with empty frame contents, show the sequence of frame
contents after each request, and count the number of page fauits

* You have three available frames

* The reference string is 2-5-1-2-4-5-7-3-5-2

for each of the following page replacement algorithms:

(i) Optimal page replacement
(i) LRU (Least Recently Used) page replacement

[3]

[4]
[4]

currently four processes running; their maximum needs and their
current allocation are shown in the table below
Maximum Current
requirements allocation
Process A 12 3
Process B 9 4
Process C 10 3
Process D 12 7
Free: 6

(i)

(d) In the context of memory allocation and dynamic partitioning,
describe the “first-fit", “best-fit", and “worst fit” methods of memory

Determine whether the current state is a safe state, or not,
and in either case, demonstrate why.
(i) Assume that the system is using the banker’s algorithm for

dynamic deadlock avoidance. Describe the algorithm'’s
response for the following allocation requests
a. B requests 4 instances
b. C requests 3 instances

allocation, and list their advantages and disadvantages

E1.S - section B: Operating systems

[2]

(2]
[2]

(31

Page 2 of 2

E1.9 (section B): page 1 of 2
E1.9 - section B: Operating Systems
Model answers to exam questions 2005

Question 1
(a) [bookwork]

Ready processes are divided into several separate queues, each queue having a different
priority associated with it. Queues with higher priority can be given more time-slices for each
process. Different scheduling algorithms can be used for scheduling within queues.
Processes are allowed to move between queues, depending on their CPU utilisation.
Advantages: Flexible, aliows fine control of scheduling, feedback mechanism adds
adaptability; this is the most general scheme you can have.

Disadvantages: It's the most complex scheme — you have to decide on several issues,
including number of queues, scheduling algorithm for each queue, method for promoting or
demoting a process, method for determining which queue a new process should enter;
extensive tuning might be required to define the best scheduler.

(b) [new computed example]

Priority Scheduling without preemption
A (4)
B (3)
C(2)
D (5)
E (6)

01234 567 8 9101112314 1516

Average waiting time: (0+0+7+2+1)/5=2ms

Average turnaround time: (3+4+11+4+3)/5=E ms

E (6) |
01234567 8 9101112 13141516
Average waiting time: (0+4+7+0+0)/5=22 ms
Average turnaround time: (3+8+11+2+2)/5=5.2ms

Round Robin (4ms
A (3) l
B (2)
C (1)
D (4)
E (5 —
0123 456 7 8 910 111213141516
Average waiting time: (0+0+3+6+5) /5= 2.8 ms:
Average turnaround time: (3+4+8+8+7) /5 =6 ms

(c) [Bookwork]

Impose ordering on chopsticks, assigning a unique number

(between 1 and 5) to each of them. A dining philosopher must acquire the lower number
chopstick first before taking the higher one.

Deadlock now impossible since philosophers 1 and 5 will compete for one of the chopsticks,
and whoever acquires it first, will eat, release the chopstick, allowing the other one to
complete.

E1.9 (section B): page 2 of 2
id) [Bookwork]:

Optimal page replacement: replace page that will not be used for the longest period of time.
« Advantages: Lowest page-fault rate of all algorithms — can be used to evaluate
relative performance of other page replacement algorithms.
+ Disadvantages: Difficult to impossible to implement since we need to know the stream
of requested pages in advance.
Least-recently used: replace the page that has not been used for the longest time
» Advantages: Good performance
+ Disadvantages: Not the easiest fo implement

Question 2:

(a) [bookwork]

initialise a semaphore to 0, and require process B to wait on it until A signals that it is
complete:

init(Sem, 0)

Process A: Process B
Critical region wait(Sem);
Signal(sem), critical region;
End signal(Sem);

End
(b) [new computed example]

Optimal page replacement algorithm (6 page faults)

2 5 1 2 4 5 7 3 5 2
Frame1 2 2 2 2 2 2
Frame?2 - 5 5 5 5 5
Frame3 - - 1 4 7 3

LRU (Least recently used) page replacement algorithm (8 page faults)

2 5 1 2 4 5 7 3 5 2
Frame1 2 2 2 2 5 5 5 5
Frame2 5 5 4 4 4 3 3
Frame3 - - 1 1 1 7 7 2

(¢) [New computed example]

(i) The current state is safe since there exist safe sequences through which resources
can be allocated without the possibility of a cieadlock: e.g D->C->B->A. (more exist)

(i) (a) Request granted since, following the assignment of 4 resources to B, there still
exist safe sequences (e.g. B->C->D->A)

(i) (b) Request refused since following the assignment of 3 resources to C, we would
have an unsafe state.

(d) [Bookwork]

First-fit: allocate first memory hole that is big enough. Advantages: fast allocation method.
Disadvantages: can be very inefficient

Best-fit: allocate the smallest hole that is enough. Advantages: less inefficient in terms of
space that first-fit. Disadvantages: tends to produce lots of remaining tiny
fragments, and requires search through the entire list of memory holes

Worst fit: allocate the largest hole that is ava lable. Advantages: after allocating the
request, the remainder of that hole might still be usable. Disadvantages: requires
search through the entire list of holes.

