IMPERIAL COLLEGE LONDON

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING
EXAMINATIONS 2003

PRINCIPLES OF COMPUTERS AND SOFTWARE ENGINEERING: SECTION A

Wednesday, 11 June 2:00 pm

Time aHowed:'1:3O hours

There are THREE questions on this paper.

Corrected Copy

Answer TWO questions.

This exam is OPEN BOOK

Any special instructions for invigilators and information for candidates are in page 1.

Examiners responsbible: First Marker(s) G.A. Constantinides
Second Marker(s): Y.K. Demiris

© University of London 2003

E1.9

Special information for invigilators: none

Special information for candidates: The notation “Ox” before a number means that the number is expressed using
hexidecimal representation.

Principles of Computers and Software Engineering: Section A Page 1 of 4

The Questions
1.

An ARM program is shown below. (SWI 0x02 prints the null-terminated string at
address 0 to the screen).

AREA prog, CODE, READONLY

SWI_WriteO EQU 0x02
SWI_Exit EQU 0x11
ENTRY
ADR ro, buffer
SWI SWI_Write0
BL Jumble
SWI SWI_WriteO
SWI SWI_Exit
Jumble STMED r13!, {ro,ri}
JumbleLoop LDRB ri, [r0], #1
CMP rl, #0
RSBNE rl, rl, #{'A'+'2")
STRNEB rl, [r0,#-1]
BNE JumbleLoop
LDMED r13!, {ro,rl}
MOV pc, rl4
buffer = “MYTEXT”, O
END

a) What function does the subroutine Jumble perform?

(2]

b) What would you see on the screen if you execute this program?

[2]

When assembled, the address of the entry point to this prograni is 0x1000. Just before
execution, r0 = 0x0, r1 =0x0,and r13 = 0x0.

c) State the value of r13 during execution of the Jumble subroutine.

(2]

d) Draw a diagram of the stack during execution of the Jumble subroutine, clearly
labelling the addresses and values of all entries.

[8]
¢) You are required to change the program so that only upper-case letters are modified

by the Jumble subroutine. All other characters should remain unchanged. Write
ARM code for the new version of the subroutine.

(6]

Principles of Computers and Software Engineering: Section A Page 3 of 4

2.
The Fibonacci sequence is: 1, 1, 2, 3, 5, ... and is defined by the following recurrence.
}71== 1

1?2== 1
F,=F, +F, forn>2

Part of an ARM program to generate and print a Fibonacci sequence of length 20 is
shown below. '

After creating the sequence using a subroutine called Fibonacci, the program
prints the sequence using a subroutine PrintNum, which prints the contents of r1 to
the screen followed by a carriage-return / line-feed combination.

AREA prog, CODE, READONLY

SWI_Exit EQU 0x11
SeglLength EQU 20
ENTRY

; Create Fibonacci Sequence
ADR r0, buffer

MOV rl, #SegLength

BL Fibonacci

; Print Segquence
MOV r2, ril
PrintLoop LDR rl, [rol, #4
BL PrintNum
SUBS r2, r2, #1
BNE PrintLoop

; BExit
SWI SWI_Exit

Fibonnacci Sequence Generator

Input: r0 - pointer to buffer to £ill with sequence
r1 - desired sequence length (ri > 2)

Output: buffer is filled with sequence

Ne Se we N

[SUBROUTINE HERE]
buffer % 4*SeqgLength

END

Write the routine Fibonacci, to go in the program in the space identified.
Comment your code.

[20]

Principles of Computers and Software Engineering: Section A Page 2 of 4

3.

You have been given the task of improving the performance of a computer system.
The computer has a 16-bit address bus and a 16-bit data bus, and is byte-addressed
(i.e. each byte in memory has a distinct address).

A cache with 8 lines, each of one byte, has been suggested.

In order to evaluate the design, a typical program has been executed, and is found to
result in the following memory accesses, ordered by time.

Read value 0x01 from address 0x0000 .
Read value 0x01 from address 0x0001
Write value 0x02 to address 0x0000
Read value 0x02 from address 0x0002
Read value 0x03 from address 0x0003
Write value 0x06 to address 0x0001
Read value 0x05 from address 0x0004
Read value 0x08 from address 0x0005
Write value 0xAO to address 0x0002

V0N WD

a) State the principles of spatial and temporal locality

(4]

b) Draw a diagram illustrating the cache contents after the access sequence above has
been completed. For each cache line, include the tag, the valid bit, and the data.

(8]
¢) State the number of cache misses caused by the above sequence.
(2]
d) An alternative design is to use a 4-line cache with two bytes per line. Which of the

memory accesses in the above sequence result in cache misses, when applied to the
alternative design?

(6]

Principles of Computers and Software Engineering: Section A Page 4 of 4

E1.9

IMPERIAL COLLEGE LONDON

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING
EXAMINATIONS 2003

PRINCIPLES OF COMPUTERS AND SOFTWARE ENGINEERING: SECTION B

Wednesday, 11 June 2:00 pm

Time allowed: 1:00 hour

Co
I‘I‘Gclte d C
Opy

There are TWO questions on this paper.

Answer ONE question.

Any special instructions for invigilators and information for candidates are in page 1.

Examiners responsible: First Marker(s) Y.K. Demiris
Second Marker(s): M.P. Shanahan

© University of London 2003

Section B
Use a separate answer book for each section.

Answer ONLY ONE of the following two questions
QUESTION 1:

(a) Describe the MQS (Multi-level Queue Scheduling) process
scheduling algorithm and list its advantages and disadvantages

(b) Consider the following set of processes, with their corresponding
duration and arrival times:

Process | Arrival time (ms) Duration (ms)
A 0 2
B 2 3
C 3 6
D 4 5

Show the order of execution (including timing information) of the
processes if the scheduler implements the following scheduling

algorithms:

(i) Shortest job first (SJF)
(i) RR (round robin) with a time quantum of 4ms

(iii) RR with a time quantum of 1ms

For each of the algorithms calculate the average waiting time, and
the average turnaround time.

(c) Describe the memory management scheme known as paging, and
list its advantages and disadvantages.

QUESTION 2:

(a) Describe banker’s algorithm for dynamic deadlock avoidance

(b) Inthe context of a memory paging system, consider the following
scenario:
¢ You have three available frames
e The reference string is 4-3-1-3-5-5-6-3-1
Starting with empty frame contents, show the sequence of frame
contents after each request, and count the number of page faults
for each of the following page replacement algorithms:

(1) Optimal page replacement
(i) FIFO (first-in, first out) page replacement
(iii) LRU (Least Recently Used) page replacement

(¢) In the “readers-writers” problem, a set of processes are accessing
a block of shared data (e.g. a library catalogue): the reader
processes only read shared data, while writer processes only write
shared data. The following conditions are in place:

e A writer process can write items in the shared data block only if
there are no other writer processes that are accessing the block.

Principles of Computers and Software Engineering: Section B Page 1 of 2

[4]

[3]
[3]
[4]

(3]

[3]
2]
2]

A reader process can read the shared data only if no writer is
accessing them; more than one reader can read the shared data
at the same time.

Readers have priority: once a single reader has started accessing
the shared data, readers can retain control of the shared data
block as long as there is at least one reader in the act of reading.

Using semaphores to ensuré that the conditions above hold,
provide Pascal procedures for the reader and writer processes.
Declare and properly initialise all semaphores and other variables
that you will use. The data type Semaphore, and the standard
semaphore primitives init(Sem, number), wait(Sem), and
signal(Sem) are available. You may assume that the following
procedures are also available: produce_item, write_item,
read_item, consume_item.

Principles of Computers and Software Engineering: Section B Page 2 of 2

[10]

E2.7/11.9: Page 1 of 5

The Answers

Answer 1
a) Jumble replaces each uppercase character in the string by its alphabet-reversed
version, i.e. A->Z,B->Y, ..., Z -> A. The effect on non-uppercase characters has

no special interpretation.

[2 marks]
b) The output from this program would be “MYTEXTNBGVCG”
[2 marks]
¢) r13 = O0XFFFFFFF8
[2 marks]
d)
0x000000600 0x00000000
OXFFFFFFFC 0x00001034
[8 marks]
Address Data
e)
Jumble STMED r13!, {ro,ril}
JumbleLoop LDRB rl, [x0], #1
CMP rl, #0
BE Done
CMP rl, #'A’
BLO JumbleLoop
CMP rl, #'2'
BHI Jumbleloop
RSB rl, rl, #('A'+'2")
STRNER rl, [x0,#-1]
BNE JumbleLoop
Done LDMED r13!, {ro,rl}
MOV pc, rl4

[6 marks]

E2.7/11.9: Page 2 of 6

Answer 2
Fibonacci STMED 1rl13!, {r0-r4}

MOV r2, #1 i)

STR r2, [rol, #4 ;) starts with 1,1,

MOV r3, #1 i)

STR r3, [r0l, #4 ;)

SUB rl, rl, #2 ; number of items left to calculate
FibLoop ADD r4, r2, r3 ;) calculate and store next number

STR r4, [ro], #4 i)

MOV r3, r2 ;) advance to next operands

MOV r2, ré ;)

SUBS rl, rl, #1 ;) end of for loop

BNE FibLoop i)

LDMED rl13!, {r0-r4}

MOV pc, rl4

[20 marks]

Mark breakdown:

Pushing and popping... [2 marks]

... the appropriate registers [2 marks]

Correctly labelling [2 marks] and returning from [2 marks] the subroutine
Correctly constructing a loop, with appropriate loop bound [4 marks]
Only requiring one memory access per loop iteration [2 marks]

Other correct functioning [6 marks]

A direct recursive implementation is exponential-time & therefore does not deserve
full marks. In this case, do not give marks for correct loop construction and loop
bound, but no other penalty.

Answer 3

a)

E2.7/11.9: Page 3 of 7

Spatial Locality: If an item is referenced, nearby items are likely to be referenced
Temporal Locality: If an item is referenced, it is likely to be referenced again soon

b)

Cache Line | Valid | Tag Data
0x0 Y 0x00 0x02
0x1 Y 0x00 0x06
0x2 Y 0x00 0xA0
0x3 Y 0x00 0x03
0x4 Y 0x00 0x05
0x5 Y 0x00 0x08
0x6 N - -
ox7 N - -

¢) 6 misses (all the reads).

d) 3 misses (1* read of every pair)

el R S A

0x0000 => byte 0, line 0, tag 0, miss
0x0001 => byte 1, line 0, tag 0, hit
0x0000 => byte 0, line 0, tag 0, hit
0x0002 => byte 0, line 1, tag 0, miss
0x0003 => byte 1, line 1, tag 0, hit
0x0001 => byte 1, line 0, tag 0, hit
0x0004 => byte 0, line 2, tag 0, miss
0x0005 => byte 1, line 2, tag O, hit
0x0002 => byte 0, line 1, tag 0, hit

[4 marks]

[8 marks]

[2 mark]

[6 marks]

E1.9 (section B): page 1 of 2
E1.9 — section B: Operating Systems
Model answers to exam questions 2003

Question 1

(i) [pookwork] The MQS scheduling algorithm divides ready processes into separate queues
(for example, separate queues for foreground (interactive) and background (batch)
processes); each queue has a priority associated with it, and queues with higher priority are
given more time-slices for each of their processes. Each queue can have a separate
algorithm for scheduling within the queue.

Advantages: Flexible — allows fine control of scheduling

Disadvantages: Does not allow for the possibility of processes that change requirements
throughout their execution (e.g. a process that started with a long CPU burst, but requires
interaction later)

(i) [new computed example]

SJF
A(2)
B (3)
C (6)
D (5)
01234 567 891011121314 1516
Average waiting time: (0+0+7+1) /4 =2 ms
Average turnaround time: (2+3+13+6) / 4 =24 /4 = 6ms

Round robin (4ms)
A (2)
B (3)
C (6)
D (5)

012345678 9101112 13141516
Average waiting time: (0+0+8+0) / 4 =2 ms
Average turnaround time: (2+5+9+5) /4 =21/4=5.25ms

Round Robin(1ms)
A(2) |
B (3)
C (6)
D (5)

0123456738 910 111213141516
Average waiting time: (0+3+7+6) /4 =4 ms
Average turnaround time: (2+6+13+11) /4 =8 ms

(iii) [Bookwork]

Paging is a memory management scheme that permits the physical address space of a
process to be non-contiguous. Physical memory is divided into fixed-sized blocks called
frames. Logical memory is broken into blocks (of the same size as frames) called pages.
Addresses generated by the CPU are now divided into two parts: a page number (p) and a
page offset (d): the page number is used as an index into a page table, containing the base
address of each page in physical memory. This base address is combined with the page offset
to define the physical memory address

Advantages: No external fragmentation — any free frame can be allocated to a process that
needs it.

Disadvantages: internal fragmentation still possible, since frames are allocated as units.

Question 2:

E1.9 (section B): page 2 of 2

(a) [bookwork] Banker’s algorithm is used to dynamically avoid deadlocks. When a
process requests a resource, the algorithm first determines whether granting the
request will lead to an unsafe state — if doesn't it grants the request, otherwise the
decision is postponed until a process releases some of its resources. To check
whether the state is safe, the algorithm:

(1) checks whether it has some resources to satisty some process
(2) The resources of that process are presumed released and added to the

available resources

(3) steps 1 and 2 are repeated until we find that all current processes can be

satisfied.

(b) [new computed example]

Optimal page replacement algorithm (5 page faults)

4 3 1 3 5 5 6 3 1
Frame1 - 4 4 4 5 6
Frame2 - - 3 3 3 3
Frame3 - - - 1 1 1
FIFO page replacement algorithm (7 page faults)
4 3 1 3 5 5 6 3 1
Frame1 - 4 4 5 6 6 1
Frame2 - - 3 3 3 5 5 5
Frame3 - - - 1 1 1 3 3
LRU (Least recently used) page replacement aigorithm (6 page faults)
4 3 1 3 5 5 6 3 1
Framet - 4 4 5 5 1
Frame2 - - 3 3 3 3 3
Frame3 - - - 1 1 6 6
{c) [bookwork]
Readers-writers problem
var mutex, wrt: Semaphore;
var read_count: int;
init(mutex, 1); init(wrt,1);
read_count=0;
Writer process: Reader process:

procedure writer()
begin
while(TRUE) do
begin
produce_item;
wait(wrt);
write_item;
signal(wrt);
end;
end;

procedure reader()
begin
while(TRUE) do
begin
Wait(mutex);
read_count=read_count+1;
if read_count = 1 then wait(wrt);
signal(mutex);
get_item;
wait(mutex);
read_count = read_count — 1;
if read_count = 0 then signal(wrt);
signal(mutex);
consume_item;
end;
end;

