(T \)
Paper Number(s): E1.9

IMPERIAL COLLEGE OF SCIENCE, TECHNOLOBY AND MEDICINE

UNIVERSITY OF LONDON

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

EXAMINATIONS 2002

EEE PART I: M.Eng., B.Eng., and ACGI

COMPUTER SYSTEMS

Monday, 10 June 2:00 pm

There are FIVE questions on this paper

Answer TWO questions from Section A and ONE question from Section B

Section A 1s open-book
Section B is closed-book

Use a separate answer book for each section

Time allowed: Section A 1:30 hours
Section B 1:00 hours

Examiners responsible:

First marker(s): Cheung, P.Y.K, Demiris, Y.K.
Second marker(s): Demiris, Y.K., Shanahan, M.S.

Corrected Copy

peo W

Section A
(Please use a separate answer book for each Section.)

1. Consider the following code fragment in ARM assembly language.
MOV rl, #0O
MOV r0, #10
LOOP1 STR r0, [rll, #4
SUBS r0, r0, #1
BNE LOOP1
MOV rl, #0
MOV r0, #5
LOOP2 LDR r2, [rl, #20]
LDR r3, [rl]
ADD r2, r2, r3
STR r2, [rl], #4
SUBS r0, r0, #1
BNE LOOP2
a) Write down an order list of memory locations, which are accessed by this code fragment,
showing the memory address and data, and whether it is a read or a write access.
[8 marks]
b) Assuming that the microprocessor takes 100ns per clock cycle, all instructions with and

without data memory access take 2 and 1 clock cycles respectively, state how long this code
fragment will take to execute.

[2 marks]

c) Assume that the microprocessor uses 32 bytes of direct-mapped cache for data only, and each
cache line is 4 bytes. Further assume that the entire data cache is dirty at the start of the code
fragment. How many memory accesses result in cache ‘hit’ and cache ‘miss’ respectively
when this code fragment is executed?

[7 marks]

d) As a result of using cache in the microprocessor, each clock cycle is shortened to 10ns. The
cache miss penalty is 120ns. How long will this code fragment take to execute as a result of
using cache?

[3 marks]

Page 2 of 6

Run-length coding 1s a method of compression where repeated data values are represented by a repeat
count (1.e. the length of the run) followed by the data value itself. For example a sequence of byte
values (in hexadecimal)

4A 47 4A 42 4A 4A 09 09 09 00 A7 A7 A7 A7 69 01

is compressed to:

06 4A 03 05 01 00 04 A7 01 69

The repeat count value has a maximum value of 255 and the data value are from O to 255.

a) Write a subroutine RunLength in ARM assembly language for the following specification:

Subroutine RunlLength - run-length compress a block of data stored as bytes

; Input parameters: rl - starting address of data to be compressed

r2 - starting address of output buffer where
compressed data is to be stored

r3 - no of bytes to be compressed

; Return parameters: None

; The output format should be:
<repeat_count> <byte_value> <repeat_count> <byte_value>

[10 marks]
b) An alternative run-length encoding rule is given below:
1) If (datavalue = 0) or (run-length > 3), encode it as
<00> <xrepeat_count> <byte_value>
i1) For all other situations, the data are left as they are (i.e. no encoding is applied).

Therefore, the above byte sequence will be encoded as:

00 06 4A 09 09 038 00 01 00 00 04 A7 69

Modify the subroutine in a) to implement this encoding rule.

[10 marks]

Page 3 0f 6

3. The following ARM code fragment processes the characters in a NULL-terminated string. In order to
use the code, r0 should point to the start of the string.

a)

b)

d)

Loop LDRB rl, [x0], #1
CMP rl, #0
BE (3. finished sk
CMP rl, #'A’
BLT loop
CMP rli, #'7’
BGT loop
SUB r2, rl, #'A’'-‘a’
STRB r2, [x0, #-1]
B loop

finished

What is the effect of executing the above code on a string?
[3 marks]

Re-write the above code to make it into a subroutine called “TL” that could be called from the
program below as shown. Use an “empty decreasing” stack.

AREA prog, CODE, READONLY
SWI_Exit EQU &11
ENTRY
MOV rl, #0
MOV r2, #5
Ll ADR r0, string
BL TL
SWI SWI_Exit
string = “Hello World!”, O0x0a, 0x0d4, O
END

[6 marks]

In the program shown above, the value of label L1 is 0x8080 and the stack pointer has value
0x1000 before entry into the subroutine. State and justify the value of the link register during
execution of subroutine TL.

[3 marks]

Draw a diagram showing the numerical addresses and numerical contents of the stack
immediately after pushing the necessary data onto the stack. (Assume that no intervening code
marked “...” alters either register r1 or register r2).

[4 marks]

You are provided with a subroutine “printc” which prints the character in register r2 to a
connected peripheral device. An example use is shown below.

MOV r2, #'A’
BL printc

Re-write your subroutine so that it also calls printc for each character of the modified string
[4 marks]

Page 4 of 6

L9 Corrected Copy

Section B
Use a separate answer book for each section.

ma

Answer ONLY ONE of the following two questions

QUESTION 1:
(1) Describe the round-robin process scheduling algorithm and list its
advantages and disadvantages
(11) For the following set of processes with their corresponding duration,
arrival times and priority levels [higher number indicates a higher
priority}:

a. Show the order of execution (including timing information) of the
processes if the scheduler implements the following scheduling
algorithms:

i. Shortest remaining job first (SRIF)
1. Priority scheduling without pre-emption
1. Priority scheduling with pre-emption

b. For each of the algorithms calculate the average waiting time, and the

average turnaround time.

Process Arrival time (ms) Duration (ms) Priority level
A 0 2 4
B 2 5 2
C 4 1 5
D 7 5 6

(111) Describe the Optimal, First-In-First-Out (FIFO), and Least-Recently-Used
(LRU) page replacement algorithms, and list their advantages and

disadvantages.
(iv) In the context of memory management, describe the condition known as
“thrashing”
QUESTION 2:
(1) When is a set of processes deadlocked?
(11) In the context of deadlock avoidance, describe what it means for a

system state to be “safe”. Describe the difference between an unsafe state
and a deadlock state.

(1) A system has 14 instances of a resource type and there are currently four
processes running; their maximum needs and their current allocation are
shown in the table below.

a. Determine whether the current state is a safe state, and show why.

b. Assume that the system is using banker’s algorithm for dynamic
deadlock avoidance. Given the current state below, determine the
algorithm’s response [i.e. grant or refuse request] for the following

allocation requests. Explain your answer.

1. Process C requests 1 instance

Page 5 of 6

(4]

[2]
[2]
(2]

(2]

(7]

(1]

(2]

(2]

(2]

(2]

Paper E1.9

(iv)

i1. Process B requests 4 instances
1il. Process D requests 4 instances

Max Current
Process A 5 2
Process B 14 2
Process C 4 2
Process D 12 3
Free: 5

In the “producer-consumer” problem, two processes are communicating
through a buffer that can hold 0 to n items. The producer process
continuously produces items and places them in the buffer, while the
consumer continuously fetches items from the buffer and consumes
them. The following conditions are in place:

The producer process can only place items in the buffer if there is space
available in the buffer — it blocks otherwise.

The consumer process can fetch items from the buffer only if there are
1tems available — it blocks otherwise.

Mutual exclusion is required: the producer and the consumer processes
cannot access the buffer at the same time.

Using semaphores to ensure that the conditions above hold, provide
Pascal procedures for the producer and consumer processes. Declare and
properly initialise all semaphores you use. The data type Semaphore, and
the standard semaphore primitives init(Sem, number), wait(Sem), and
signal(Sem) are available. You may assume that the following
procedures are also available: produce_item, write_item, get_item,
consume_item, and that the constant “n” has been declared.

Page 6 of 6

(2]
(2]

(8]

Paper E1.9

J(] o (uws 202

DdeEcTion A PA?e.Q, = 1.9
Answer to Question 1
a)
Address (hex) Data (hex) R/W hit/miss (for part c.)
0000 0000 000A \\ Miss
0004 0000 0009 \ Miss
0008 0000 0008 W Miss
000C 0000 0007 \V Miss
0010 0000 0006 W Miss
0014 0000 0005 W Miss
0018 0000 0004 \\ Miss
001C 0000 0003 \\ Miss
0020 0000 0002 W Miss
0024 0000 0001 W Miss
0014 0000 0005 R Hit
0000 0000 000A R Miss
0000 0000 000F W Hit
0018 0000 0004 R Hit
0004 0000 0009 R Hit
0004 0000 000D W Hit
001C 0000 0003 R Hit
0008 0000 0008 R Hit
0008 0000 000B W Hit
0020 0000 0002 R Hit
000C 0000 0007 R Miss
000C 0000 0009 W Hit
0024 0000 0001 R Hit
0010 0000 0006 R Miss
0010 0000 0007 W Hit
[8 marks]
b) 89 cycles @ 100ns = 8.9 microseconds.
[2 marks]
¢) 14 ‘miss’, 11 ‘hit’ (see table above).
' [7 marks]
d) 89 x 10ns + 14 x 110 ns = 2.43 microseconds.
[3 marks]

i
Pageﬁofll
E1-9

Answer to Question 2

a)

b)

STMED
ADD
MOV
LDB
CMP
BCS
CMP
BEQ
LDB
CMP
BNE
ADD

RunLength
Start__loop

loop2

end__run MOV

MOV
finished LDMED
END

STMED
ADD
MOV
LDB
CMP
BCS
CMP
BEQ
LDB
CcMP
BNE
ADD
B

RunLength2
start_loop

loop2

; so far same as
end_run CMP
BEQ
CMP
BHI
MOV
SUB
BNE
B

no_encode

; if gets here,
run_encode MOV
MOV
MOV

B
LDMED
END

finished

rl3!,
r6,
rd, #1
r5, [rl],
rl,r6
finished
r4, #Sff
end_run
r0, [rl],
r0, r5
end_run
rd, r4,
loop2
rd, [r2],
r5, [r2],
start_loop
rl3!,

rl, r3

#1

rl3t,
r6,
rd, #1
r5, [rl],
rl,r6
finished
rd, #Sff
end_run
r0, [rl},
r0, r5
end_run
rd, r4,
Loop2

{r0-xr6,
rl, 3

#1

#1

#1

before

r5, #0
run_encode
r4d, #03
run_encode
r5, [x2],
rd, r4, #1
no_encode
start_loop

#1

r0, #0

r4, [r2],
r5, [xr2],
start_loop

rl3!, {rO0-ré6,

#1
#1

{r0-re6,

{r0-r6,

rl4
#1 ;

I

#1 ;

#1 ;
#1 ;

7

pc}

rld} ;

run-length encode

} ; preserve context

r6 has last address of buffer + 1

r4 counts the run-length

fetch a byte

if reached terminating address
finished,

else if run-length is maximum

output current data

else get the next byte

if not the same,
terminate run and output

else iIncrement run-length count

loop back for another test

output run-length

output data value

loop back for more

[10 marks]

preserve context
r6 has last address of buffer + 1
r4 counts the run-length
fetch a byte
if reached terminating address
finished,
else if run-length is maximum
output current data
else get the next byte
if not the same,
terminate run and output
else increment run-length count
loop back for another test

if data is zero, run-length encode
else 1f run-length > 3

encode it,
else just output data

. the required no of times

loop back for more

0 is special code

; output run-length
; output data value
; loop back for more
pc}
[10 marks]
2 .
Page f of A

T
S

Answers to Question 3
This question tests the students understanding of stacks and subroutine calls in assembly language.
a) This code converts any upper-case characters in the string to their equivalent lower-case characters.

Any other characters remain unchanged. The modified string overwrites the original string.
[3 marks]

b) One possible solution is shown below.

TL STMED r13!, {x0, rl, 2}
loop LDRB rl, [x0], #1
CMP rl, #0
BEQ ret
CMP rl, #'A’
BLT loop
CMP rl, #'Z’
BGT loop
SUB r2, rl, #'A’'-‘a’
STRB r2, [r0, #-1]
B loop
ret LDMED r13!, {r0, rl,r2}
MOV pc, rld

Two marks for PUSHing r0, r! and r2, two marks for POPing 10, r1 and r2 back in the correct order.
One mark for using the correct pair (STMED, LDMED) of stack instructions. Whether r14 is pushed
or whether Ir is moved into pc doesn’t matter — award one mark for each of these solutions. Deduct
one mark per unnecessary register PUSHed or POPed.

[6 marks]

¢) ADR instruction has address 0x8080, BL instruction has address 0x8084, SWI instruction has
address 0x8088. The link register (r14) will therefore hold the value 0x8088 during execution of
subroutine TL.

[3 marks]

d) Answers will vary depending on solution to (b), but for the solution given above:

Address Data

0x 1000 0x0005
OxOFFC 0x0000
0xOFF8 0x808C

One mark for correctly recognizing an EMPTY stack, one mark for correctly recognizing a
DECREASING stack. One mark for recognizing that addresses differ by 4 bytes. One mark for
ordering the data in the correct way.

[4 marks]

e) This question tests nested subroutines. The key modification necessary is to store the link register.
One possible solution is shown below

3 A
Page 7 of 4/ ¥

\|

Py

TL STMED rl13!,
loop LDRB

CMP

BEQ

CMP

BLT

CMP

BGT

SUB

STRB
print BL
B
LDMED rl131!,
MOV

ret

{r0, rl, r2,
rl, [x0], #1
rl, #0
ret
rl, #'A’
print
rl, #'Z’
print
r2, rl,
r2, [r0,
printc
loop

{x0, rl, xr2,
pc, rld

rid}

#IAI_\aI
#-11

rl4}

One mark for inserting the BL instruction, one mark for recognizing the need to save and one mark
for recognizing the need to restore the link register. One mark for printing ALL characters of the
modified string (not just the modified characters)

[4 marks]

4 ¥
Page}fof4

'Ew*ﬁ

U » ,X’((/V\.'{A“!

E1.9 — section B: Operating Systems 24 . & oL
Model answers to exam questions 2002

Question 1:

(i) The Round robin scheduling algorithm allocates the CPU to a process for a time
quantum (or time slice). If the process is still running at the end of the quantum, it is
pre-empted and CPU is given to the next process in the ready queue. The preempted
process is put at the end of the queue. New processes are also added at the end of the
queue.

Advantages: Simple to implement; fair.

Disadvantages: Difficult to determine appropriate time quantum
- too small: good response time, but large overheads
- too large: bad response time.

(ii) SRJF

COR >

012 3 4 5 6 7 8 9 1011 12 13 1415

Average waiting time: (0+1+0+1) /4 = 0.5 ms
Average turnaround time: (2+6+1+6)/4=15/4=3.75ms

Priority Scheduling (without pre-emption)

oaws

ot 2 3 4 5 6 7 8 9 1011 12 13 1415

Average waiting time: (0+0+8+0) /4 =2 ms
Average turnaround time: (2+5+9+5)/4=21/4=5.25ms

Priority Scheduling (with pre-emption)

CAaOw

012 3 4 5 6 7 8 9 10 11 12 13 1415

Average waiting time: (0+6+0+0) /4 = 1.5 ms
Average turnaround time: (2+11+1+5)/4=19/4 =475 ms

(ili) (a) Optimal page replacement algorithm: replaces the page that will not be
used for the longest period of time.
Advantages: Lowest page-fault rate of all algorithms
Disadvantages: Difficult to impossible to implement — we need to know in

(7 47

advance the stream of page requests.

(b) FIFO: replaces the page that has been in memory for the longest time.
Advantages: easy to understand and implement (FIFO queue)
Disadvantages: sub-optimal performance — does not account for usage of
pages.

(c) LRU: replaces the page that has not been used for the longest time.
Advantages: good performance
Disadvantages: not easy to implement

(iv) Thrashing: the processor spends more time swapping memory pieces than
executing instructions.

Question 2:

(1) A set of processes is deadlocked if each of the processes in the set is
waiting for an event (e.g. a resource to become available) that only another
process in the set can cause.

(i) A state is safe if the system can allocate resources to each of the processes
(up to the maximum declared by that process) in some order, and avoid a
deadlock. An unsafe state is NOT a deadlock state; it may lead to it.

(ili) (a) Current state is safe — resources can be allocated in a specific order
(e.g. A->C->D->B, note that there are other sequences too) so system can
avoid a deadlock.

(b) -I: Tt will grant the request; the resulting state is safe (A->C->D->B)
-1I: It will refuse the request since it leads to an unsafe state
-IT: Tt will refuse the request since it leads to an unsafe state

(iv) Producer-consumer probiem

var item, space, mutex: Semaphore;
init(item,0); init(space,n); init(mutex,1);

Producer process:

Procedure producer()
Begin
While(TRUE) do
Begin
Produce item;
Wait(space);
Wait(mutex);
Write_item;
Signal(mutex);
Signal(item);
End;
End;

Consumer process:

Procedure producer()
Begin
While(TRUE) do
Begin
Wait(item);
Wait(mutex);
get_item;
Signal(mutex);
Signal(space);
Consume_item;
End;
End;

