Paper Number(s): @
E2.18

IMPERIAL COLLEGE LONDON

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING
EXAMINATIONS 2005

EEE Part Il / ISE Part |: MEng, BEng and ACGI Corrected Copy

SOFTWARE ENGINEERING: INTRODUCTION, ALGORITHMS AND
DATA STRUCTURES

Tuesday 24™ May 2005 2:00pm

There are THREE questions on this paper.
Question 1 is compulsory and carries 40% of the marks.

Answer Question 1 and EITHER Question 2 (carrying 60%)
or Question 3 (carrying 60%).

This exam is open book

Time allowed: 1:30 hours.

Any special instructions for invigilators and information for candidates are on
page 1.

Examiners responsible:

First Marker(s): Shanahan, M.P.
Second Marker(s): Demiris, Y K.)

© University of London 2005

Information for Invigilators:

Students may bring any written or printed aids into the exam.

Information for Candidates:

Marks may be deducted for answers that use unnecessarily complicated
algorithms.

Software Engineering: Introduction, Algorithms & Data Structures page 1 of 5

The Questions

1 Assume the existence of the following data type TList, and assume that
TList has the standard set of access procedures Empty, First, Rest,
and Add.

type
TList
TLink
record
First : integer;
Rest : TList;
end;

“TLink;

(a) Suppose L is a variable of type TList. Consider the following lines of
code.
L := Empty;
Add(3,L);
Add(5,L);
Add(7,L);
Add(9,L);

After the execution of this code, what is the value of the following
expression?
First(Rest(L)) + First(L)

(b) After the execution of the code in (a) what is the value of
L”.Rest”.Rest”.First?

(c) Consider the following iterative procedure.

function Fl(L : TList): integer;
begin
T := 0;
while L <> Empty do
begin
T := T + First(L):
L := Rest(L);
end;
return T;
end;

Write a recursive function called F2 that computes the same thing as F1.

(d) Consider the following recursive procedure.

Software Engineering: Introduction, Algorithms & Data Structures page 2 of 5

[8]

[8]

[8]

function F3(L : TList): integer;

begin
if L = Empty
return 0O

else begin
M := F3(Rest(L))
if First(L) > M
then return First(L)
else return M;
end;
end;

What does F3 compute?

8]
[8]

(e) Write an iterative procedure F4 that computes the same thing as F3.

Software Engineering: Introduction, Algorithms 8 Data Structures page 3 of §

2. (a) Define a dynamic Pascal data type TOrg capable of representing the
management structure of an organisation. Assume that every member of
the organisation except one (the CEO) has exactly one manager, and allow
any manager to have arbitrarily many people working directly under them.
Use a tree structure in which each node is a string representing a person’s
name. The CEO will occupy the root of the tree. The leaves of the trees will
be occupied by the workers. Everyone who occupies a non-leaf node will
be a manager.

Richard
\\
David Julia
Jill Bill
! Peter Mary
Jane Ajfred John
Figure 2.1

Fig. 2.1 shows an example tree. The CEQ is Richard. Jill, Jane, Alfred, John,
Bill, and Mary are workers. Richard, David, Peter, and Julia are managers. [12]

(b) Using the data structure you defined in (a) write a function Boss that takes
a tree of type Torg and two names A and B as arguments and returns
True if A is B's immediate boss. In Fig. 2.1, for example, Peter is Jane's
immediate boss and David is Peter's imrediate boss. You may assume all
names in the tree are unique. [24]

(c) Using the data structure you defined in (a), write a function Efficiency
that computes the proportion of workers to managers in a given tree. In Fig.

2.1 there are 6 workers and 4 managers, so the function would return 6/4
or 1.5. [24]

Software Engineering: Introduction, Algorithms & Data Structures - page 4 of 5

3. (a) Assuming N is declared as an integer constant, write a function
FactArray that returns an array A of length N such that, for any i
between 1 and N, A[i] is equal to the the factorial of i. Ensure that your
algorithm is not unnecessarily inefficient. Recall that, for m > 0, the factorial
of mis m* (m-1) * (m=2) * ... * 1. In terms of N, how many multiplications
will your procedure perform? [18]

(b) Rather than using pointers, it is possible to use an array to represent a
binary tree. Fig. 3.1 shows one way to represent the tree of characters in
of Fig. 3.2. The root is the 15! element of the array. Each node occupies
three array elements: the first element is the character, the second is the
location in the array of the left sub-node, and the third is the location of the
third sub-node. An empty sub-tree is denoted by 0 (analogous to the nil
pointer).

1 2 3 4 5 6 17 8 9 10 11 12 13 14 15

B47AO0D1013CO0E00

Figure 3.1
B
A D
C E
Figure 3.2

Write a procedure PrintTree that takes an N-element array of integers
as an argument and carries out an in-order (left-node-right) traversal of the
corresponding binary tree of characters, printing each character on the
console as it goes. Assume that the tree is represented_in the N-element
array according to the above scheme. You may assume that characters

are represented by their ASCII equivalents and that there is a function
char that takes an integer and returns the corresponding ASCII character. 241

(c) Using the same representational scheme as in (b), write a function
sumTree that takes an N-element array of integers as an argument and
returns the sum of the ASCII codes of all the characters stored in the tree.
Assume that unused locations of the array are filled with zeros. Note: there
is an easy way to do this and a hard way. You will gain most marks for
doing it the easy way.) [18]

_Software Engineering: Introduction, Algorithms & Data Structures : page 5of 5

E1.8/E2.7A: Page 1 of 4

L (O N
Model Answers

1. (a) [New theoretical application]
16
(b) [New theoretical application]
5

(c) [New theoretical application]

function F2(L : TList): integer;
begin

if L = Empty

return 0

else return(First(L)+F2(Rest(L));
end;

(d) [New theoretical application]

F3 computes the maximum integer in the list L.

(e) [New theoretical application]

function F4(L : TList): integer;
begin
M = 0;
while L <> Empty do
begin
if First(L) > M
then M := First(L);
L := Rest(L);
end;
return M;
end;

2

(a) [New theoretical application]

type
TOrg = “TNode;
TNode =
record
Name : string;
Manages : TSubs;
end:;

TSubs = "TLink;
TLink
record
First : TOrg;
Rest : TSubs:;
end;

|

(b) [New theoretical application]

function Boss(T: TOxg;

A : string; B : string): boolean;
var L : TSubs;
begin

if T = nil

return false

else begin

E1.8/E2.7A; Page 2 of 4

if (T".Name = A) and member(B,T".Manages)

then return True
else begin
L := T".Manages;
while L. <> nil do
begin
if Boss(L".First,A,B)
then return True
else L := L".Rest;
end;
return False;
end;
end;
end;

function member(N : string; L : TSubs):

begin

if L = nil

then return False

else if N = L".First

then return True

else return member(N,L".Rest);
end;

(c) [New theoretical application]

function Efficiency(T
var N, M : integer;

begin
N := Workers(T);
M := Managers(T);

return N/M;
end;

TOry): real;

boolean;

function Workers(T : TOrg): integer;
var L : TSubs; N : integer;
begin
if T = nil
then return 0
else if T".Manages =
then return 1
else begin
L := T".Manages;
N := 0;
while L <> nil do
begin
N := N + Workers(L".First);
L L".Rest;
end;
return N;
end;
end;

nil

function Managers(T : TOr¢): integer;
var L : TSubs; N : integer;
begin
if T = nil
then return 0
else if T".Manages =
then return 0
else begin
L := T".Manages:
N := 1;
while L <> nil do
begin
N := N + Managers(L”.First);
L := L".Rest;
end;
return N;
end;
end;

nil

E1.8/E2.7A: Page 3 of 4

3

E1.8/E2.7A: Page 4 of 4

(a) [New theoretical application]

function FactArray: array[l..N] of integer;
var I, T : integer;
A : array[l..N] of integer;

begin
T := 1;
for I := 1 to N do
begin
T := T * 1;
A[I] := T;
end;
end;

The procedure will perform N multiplications. Any student whose algorithm
inefficiently computes N separate factorials will be given only 1 mark out of
4.

[New theoretical application]

procedure PrintTree(T: array[l..N] of integer;
I: integer);
begin
if I <> 0
then begin
PrintTree(T, T[I+1}]):
writeln(Char(T[I]));
PrintTree(T, T[I+2]);
end;
end;

[New theoretical application]

function SumTree(T: array[l..N]
of integer): integer;
var I, J, S: integer;

begin
S := 0;
for I := 1 to N do
begin
J 1= (3 * (I — 1)) + 1;
S := 8 + T[J];
end:;

return S;
end:

