Paper Number(s): LE%B/
TA

IMPERIAL COLLEGE LONDON

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING
EXAMINATIONS 2004

SOFTWARE ENGINEERING: INTRODUCTION, ALGORITHMS AND
DATA STRUCTURES

Tuesday 25" May 2004 2:00pm

There are THREE questions on this paper.

Answer TWO questions.

This exam is open book

Corrected Copy

Time allowed: 1:30 hours.

Any special instructions for invigilators and information for candidates are on
page 1.

Examiners responsible:

First Marker(s): Shanahan, M.P.
Second Marker(s): Demiris, Y K.






Information for Invigilators:

Students may bring any written or printed aids into the exam.

Information for Candidates:

Marks may be deducted for answers that use unnecessarily complicated
algorithms.

Software Engineering: Introduction, Algorithms & Data Structures page 1 of 4



The Questions

1. Assume the existence of the following data types, TArray and TList,
and assume that TList has the standard set of access procedures
Empty, First, Rest, and Add.

type
TList = “TLink;
TLink =
record
First : integer;
Rest : TList;
end;

type TArray = array[l..N] of integer;

(@) Write a function with the following header that takes two arrays and
returns a linked list of all integers that occur in both arrays.

function Matches(Al : TArray; A2 : TArray): TList [12]
Ensure that the list returned does not contain duplicates.

(b) In general, how many integer comparisons will the procedure perform in the
best case? When does the best case occur? Explain your answers. [8]

Software Engineering: Introduction, Algorithms & Data Structures page 2 of 4



2.

Software Engineering: Introduction, Algorithms & Data Structures

(a) Anamoeba reproduces asexually, so each individual has only one parent.

(b)

(c)

Define a Pascal data type TFamily that can represent the family tree of
an amoeba. Each node in the tree should contain the name of a parent, and
have potentially any number of sub-nodes for children.

Write a function with the following header that takes the family tree of an
amoeba and two names and returns True if they are siblings (ie: have the
same parent) and False otherwise. You may assume that every name in
the tree is unique.
function Siblings(Family : TFamily;
Namel : string; Name2 : string): boolean

Describe in words how you modify your data structure to allow for two
parents.

page 3 of 4

(6]

[10]

[4]



3. Figure 3.1 depicts a binary tree of characters. The tree is not ordered.
A
B C
D E F G
H | J K
Figure 3.1

(a) Write out the sequence of nodes that would be visited by a procedure that
traversed the tree in left-root-right order.

(b) Draw an ordered binary tree with the same contents as the tree in Figure
3.1.

(c) If a pointer takes up two bytes in memory, what is the storage requirement
for the tree in Figure 3.1, assuming it is represented as a dynamic data
structure? Explain your answer.

(d) Draw a sketch showing how the left-half of the tree in Figure 3.1 might be
represented in an array rather than using pointers. Explain your answer.

Software Engineering: Introduction, Algorithms & Data Structures page 4 of 4

[5]

5]

(5]

[5]



- .,

E1.8/2.7A: Page 1 of 3

Model Answers

1. (a) [New theoretical application]
function Matches(Al : TArray; A2 : TArray): TList;
var X, Y : integer;
begin
Ans := EmptyList;
for X := 1 to N do
for ¥ := 1 to N do
if Al[X] = A2([Y]
then Ans := AddND(A1l[X],Ans);
return Ans;
end;

If the student gets above right but omits to check for duplicates, they should
get half the total marks.
function AddAND(Z : integer; List : TList): TList;
{ Add with check for duplicates }
var Ptr : TList;
begin
Ptr := List;
while (Ptr <> EmptyList) and (First(Ptr) <> Z) do
Ptr := Rest(Ptr);
if Ptr = EmptyList
then return Add(Z,List)
else return List;
end;

(b) [New theoretical application]

The best case is when the two arrays have no elements in common. Then
the calls to AddND will not require any integer comparisons and the total
number is N2 — once for each call to AddND. There will be N2 calls because
the invocation is embedded in two nested for loops, each of which carries
out N iterations.

(If the student’s answer allows for early exit of the inner for loop, then this
will be reduced to N comparisons)

The worst case is where the two arrays are identical. Then the total
number of comparisons is . We have the
same N2 comparisons as before, plus the comparisons carried out by the
calls to AddND. The outer loop executes N times, and the i"™ iteration of the

inner loop requires i-1 comparisons, because the list of common elements
will have length i-1.



E1.8/E2.7A: Page 2 of 3

(a) [New theoretical application]

type
TFamily = "TNode;
TNode =
record
Parent : string;
Kids : TList;
end;

TList
TLink
record
First : TFamily;
Rest : TList;
end;

“TLink:

(b) [New theoretical application]

function Siblings(Family : TFamily;
Namel : string; Name2 : string): boolean;
var Kids : TList; Found : boolean;
begin
if Family = nil
then return False
else begin
Kids := Family".Kids;
if Member(Namel,Kids) and Member(Name2,Kids)
then return True
else begin
Found := False;
while Kids <> nil and not Found do
begin
if Siblings(Kids".First,Namel,Name2)
then Found := True
else Kids := Kids”".Rest;
end;
return Found;
end;
end;

(c) [New theoretical application]

The TNode type definition would have to include a field for each parent.
But it would not be possible to encode every hereditary relationship in a
single tree. To do this, we would require multiple interconnected trees with
different root nodes (a forest).



3.

E1.8/E2.7A: Page 3 of 3

(a) [New theoretical application]
DBHEIAJFKCG

(b) [New theoretical application]
F
B J
A D H K
C E G I
(c¢) [New theoretical application]

Each node including the leaves requires two bytes of storage per pointer
plus one for the character. So the total is 55 bytes.

(d) [New theoretical application]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Each node takes up three elements of the array. The first element is the
character, the second is the index of the left sub-node, and the third is the
index of the third sub-node. If a node has no sub-node, then a 0 goes in the
appropriate location (analogous to the nil pointer).







