IMPERIAL COLLEGE LONDON

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING
EXAMINATIONS 2003

SOFTWARE ENGINEERING: INTRODUCTION, ALGORITHMS AND DATA
STRUCTURES

Monday, 9 June 2:00 pm

Time allowed: 1:30 hours

There are THREE questions on this paper.

Answer TWO questions.

Corrected Copy

This exam is OPEN BOOK

Any special instructions for invigilators and information for
candidates are on page 1.

onsible Firet Marker(s) : M.P. Shanahan

\~/

Second Marker(s) : Y.K. Demiris

© University of London 2003

Information for Invigilators:

Students may bring any written or printed aids into the exam.

Information for Candidates:

None.

Software Engineering: Introduction, Algorithms & Data Structures page 1 of 4

Assume the existence of a data type TList for a linked list, with the
standard set of access procedures Empty, First, Rest, and Add. Now

consider the following procedure.

function Merge(Listl, List2 : TList): TList;
var List3: TList;

begin
List3 := Empty;
while Listl <> Empty or List2 <> Empty do
begin

if Listl = Empty or
First(List2) < First(Listl)
then begin

List3 = Add(First(List2),List3);
List2 := Rest(List2);
end
else begin
List3 := Add(First(Listl),List3);
Listl := Rest(Listl);
end;
end;
Merge := List3;
end;

(a) Suppose L1 is the list [Amber, Chris, Ellen] and L2 is the list
[Billy, Darren]. Trace the execution of the procedure call
Merge (L1, L2) by showing the values of Listl, List2, and List3 at
the end of each iteration of the while loop. [10]

(b) What does the function do? How does it work? What conditions must
List1 and List2 meet for the function to work correctly? [6]

(c) What difference, if any, would it make to the procedure if the arguments
were declared as call-by-reference? , [4]

Software Engineering: Introduction, Algorithms & Data Structures page 2 of 4

{(a) Write a procedure thattakes a two-dimensional array A1 of N by M integers

(*1] '

n

and produces another N by M array A2 of integers in which each element
[x,y] has been replaced by the average of the neighbourhood of five
elements comprising [x,y] itself and the four elements above, below, and to
either side of [x,y]. Copy the edges and corners of A2 straight from A1. [7]

(b) Assuming the compiler does not carry out any optimisation, how many add
instructions in fotal will be executed by the procedure when it runs?
Explain your workings. 7

(c) Assume the existence of a data type TTree for a binary tree with the
standard set of access procedures EmptyTree, Left, Right, and
Root. Write a function SameShape that takes two binary trees and
returns True if they have the same shape, ignoring the content of their
nodes, and False otherwise. For example, the following two trees have the
same shape,

Y
| X /Y\
X X Y Y
while the following two trees do not.
X Y
X y Y\ y
A Y
X X
[6]

Software Engineering: Introduction, Algorithms & Data Structures page 3 of 4 ~

Software Engineering: Introduction, Algorithms & Data Structures

(b)

(c)

HPUY SRR TR B §
VI MaLCit tia

- .s fem £uvem
i

uitul
if the string contains non-matching round parentheses, but True otherwise.
For example, if the string is “(P+Q)-R)+1” then the function should return
True, but if the string is “Happy(Fred))” or “Happy(Fred” then the function
should return False. You can assume the existence of a function
Length (S) that returns the length of the string s.

Hint: an easy way to do this is to work along the string, maintaining a count
of the level of nesting.

The following code defines a recursive function with the same purpose as
the function in part (a). ’

1 function Match(S : string;
2 I, J : integer): boolean;
3 begin

4 if I > Length(S)

5 then begin

6 if J =20

7 then return True

8 else return False;
9 end

10 else if J < O

11 themn return False
12 else begin

13 if s(I] = *(°

14 then return Match(S,I+1,J+1)
15 else if S[I] = ')’

16 then return Match(S,I+1,J-1)
17 else return Match(S,I+1,J);
18 end;

19 end;

Explain how the function works. Your explanation should say what the
roles of the parameters I and J are, and what their values should be when

the function is first called.

Write a recursive procedure that computes the maximum level of nesting of
brackets in a string. For example, the maximum level of nesting in the string
“Happy(Fred)” is 1, while the maximum level of nesting in the string
“L oves(Mother(x),x)" is 2. You may assume the string has matching
parentheses.

page 4 of 4

6]

[6]

[8]

E1.8/E2.7A: Page 1 of 3

Model Answers

1. (a) [New theoretical application]
Iteration 1: List1 = [Chris, Ellen], List2 = [Billy, Darren}, List3 = [Amber]
Iteration 2: List1 = [Chris, Ellen], List2 = [Darren], List3 = [Billy, Amber]
Iteration 3: List1 = [Ellen], List2 = [Darren], List3 = [Chris, Billy, Amber]
Iteration 4: List1 = [Elien], List2 = [], List3 = [Darren, Chris, Billy, Amber]
Iteration 5: List1 = [], List2 =[], List3 = [Ellen, Darren, Chris, Billy, Amber]
(b) [New theoretical application]

The procedure takes two ordered lists List1, and List2, and produces a
third list List3, in reverse order, which is the result of merging List1 and
List2.

It works by repeatedly taking the head off one of the lists and adding it to
the third (which is initialised to be empty). The head of the list chosen is
always less-than-or-equal to the head of the other list, thus ensuring the
reverse orderedness of the final list.

List1 and List2 must themselves be ordered for the procedure to work
correctly.

(¢) [New theoretical application]

If the arguments were declared as call-by-reference parameters, then the
values of the variables assigned to List1 and List2 in the calling procedure
would be modified. This would mean they would be overwritten by empty
lists when the function terminated. The function would otherwise still work,
however.

E1.8/E2.7A: Page 2 of 3

2. (a) [New theoretical application]
procedure Blur (Al : TArray, var A2 : TArray);

var X, Y : integer;
begin
for X := 2 to N-1
for v := 2 to M-1
begin
A2[X,Y] := Al[X,Y]+Al[X+1,Y]+Al1[X,Y+1]1+
Al [X-1,Y1+Al1[X,Y-1];
A2[X,Y] = A2[X,Y1/5;
end;
// Edges
for X := 1 to N
begin
A2 [X,1] = Al[X,1];
A2 [X,M] = Al[X,M];
end;
for v := 1 to M
begin
A2{1,Y] = Al{1l,Y];
A2 [N, Y] = Al[N,Y];
end;
end;

(b) [New theoretical application]

For the main pair of nested for loops, the procedure will execute
(N-2)*(M-2)*4 add instructions for the body of the loop, plus (N-2)*(M-2)
adds for the inner loop variable, plus (N-2) adds for the outer loop variable.
The two “edges” for loops will execute a further N+M add instructions. So
the total is (N-2)*(M—2)*5+(N-2)+N+M.

(c) [New theoretical application]

function SameShape(T1l, T2 : TTree): boolean;
begin
if Tl = EmptyTree
then return (T2 = EmptyTree)
else begin
F := SameShape(Left(T1l),Left(T2));
F := F and SameShape (Right (T1),Right(T2)):;
return F;
end;

end;

3.

(a) [New theoretical application]

function Match(S

var I,

Flag

begin

Flag

N :=
for I
begin

if

then N

N : integer;
boolean;

:= True;
0;

string): boolean;

:= 1 to Length(S)

S{T] (O

N+1

i

else if S[I] =
then N := N-1;
if N < 0 then Flag := False;

end;

\)I

if N <> 0 then Flag := False;
return Flag;

end;

(b) [New theoretical application]

E1.8/E2.7A: Page 3 of 3

The function must be called with | =1 and J = 0. | is an index into the string
S, and J is the level of nesting of brackets in S within which the Ith
character falls. Every time an open bracket is encountered, J is
incremented, and the function is called recursively with the index advanced
by one. Similarly, every time a close bracket is encountered, J is
decremented. There are three base cases. First, if the end of the string is
reached and the level of nesting (J) is zero, then the parentheses match,
and the result ir True. Second, if the end of the string is reached and the
level of nesting is not zero, then the brackets don’t match and the result is
False. Third, if the level of nesting goes negative, then a close bracket has
been encountered without a matching open bracket before it, and the result

is False.

(c) [New theoretical application]

procedu

var Max

begin
if J
then
if I
then
else
if
the

re Nesting($S
integer) ;

> Max

Max := J;

> Length(S8)
return Max;
begin

S[I1 = ¢

n Nesting (S,

else if S[I] =

the
els
end ;
end;

n Nesting(S,
e Nesting (S,

string; I,

I+1,J+1,Max)
\)l

I+1,J-1,Max)
I+1,J,Max) ;

J

integer;

