IMPERIAL COLLEGE LONDON

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING **EXAMINATIONS 2003**

COMMUNICATIONS 1

Wednesday, 28 May 10:00 am

Time allowed: 2:00 hours

There are FIVE questions on this paper.

Answer THREE questions.

Corrected Copy

Any special instructions for invigilators and information for candidates are on page 1.

Examiners responsible

First Marker(s):

P.L. Dragotti

Second Marker(s): E.M. Yeatman

Special Information for the Invigilators: none

Information for Candidates

Some Fourier Trasforms

$$\cos \omega_0 t \iff \pi[\delta(\omega - \omega_0) + \delta(\omega - \omega_0)]$$

$$\operatorname{rect}(\frac{t}{\tau}) \iff \tau \operatorname{sinc}(\frac{\omega \tau}{2})$$

$$\frac{w}{\pi} \operatorname{sinc}(Wt) \iff \operatorname{rect}(\frac{\omega}{2W})$$

Time-Shifting Property of the Fourier Transform

$$g(t-t_0) \Longleftrightarrow G(\omega)e^{-j\omega t_0}$$

Frequency-Shifting Property of the Fourier Transform

$$g(t)e^{j\omega_0t} \iff G(\omega-\omega_0).$$

Some useful trigonometric identities

$$\cos^2 x + \sin^2 x = 1$$

$$\cos x \cos y = \frac{1}{2}\cos(x-y) + \frac{1}{2}\cos(x+y).$$

Euler's formula

$$e^{jx} = \cos x + j\sin x.$$

The Questions

1. Consider the following two waveforms $x_1(t) = \sin(4\pi t) \operatorname{rect}(t-0.5)$ and $x_2(t) = \operatorname{rect}(t-1)$ (See also Figure 1).

Figure 1: The two signals $x_1(t)$ and $x_2(t)$.

(a) Find the energy of $x_1(t)$.

[4]

(b) Find the energy of $x_2(t)$.

[4]

(c) Find the energy of $x(t) = x_1(t) + x_2(t)$.

[4]

(d) Find the Fourier transform of $x_2(t)$.

[8]

2. The signal $s(t) = \frac{50}{\pi} \text{sinc}(50t) \cos(100t)$ is multiplied by $\cos(100t)$ and the result x(t) is fed to a filter with a frequency response

$$H(\omega) = \left\{ \begin{array}{ll} 1 & \quad for \ |\omega| \leq 30 \ \mathrm{rad/s} \\ 0 & \quad otherwise \end{array} \right.$$

giving output y(t) as shown in Figure 2.

Figure 2: Receiver.

(a) Sketch the Fourier transform of s(t).

[4]

(b) Sketch the Fourier transform of x(t).

[4]

(c) Sketch the Fourier transform of y(t).

[4]

(d) Write the exact expression of the output y(t).

[8]

3. The output signal from an AM modulator is

 $x(t) = 5\cos 9900t + A\cos 10000t + 5\cos 10100t$

Determine

(a) the modulating signal m(t),

[4]

(b) the minimum value of A that allows us to use an envelope detector,

[4]

(c) the power efficiency η if A = 20,

[6]

(d) compare the power efficiency you obtain for A=20 with the one you obtain for the value of A you found in (b). Which case is more efficient?

[6]

4. Consider the frequency modulated signal

$$\phi_{FM}(t) = A \cos \left[2\pi f_c t + k_f \int_{-\infty}^t m(\alpha) d\alpha \right],$$

where the message signal is $m(t)=10\pi\cos(2\pi f_0 t)$ with $f_0=4$ kHz and the carrier is given by $c(t)=10\cos(2\pi f_c t)$ with $f_c=10$ MHz. The bandwidth of $\phi_{FM}(t)$, using Carson's rule, is 10 kHz. Determine

(a) the bandwidth of the baseband signal m(t),

[2]

(b) the peak value m_p of the baseband signal,

[2]

(c) the correct value of the coefficient k_f ,

[10]

(d) the average transmitted power.

[6]

- 5. A transmission line having $L_0=0.25~\mu\text{H/m}$ and $C_0=100~\text{pF/m}$ is connected to a 100 Ω line with a matched termination. A sine wave of 15 V amplitude propagating in the former is incident on the junction. Find
 - (a) the voltage amplitude of the reflected wave,

[7]

(b) the current amplitude of the reflected wave,

[7]

(c) the fraction of the incident power which is transmitted into the second line.

[6]

E1.6 Communications I Exam Solutions

1. (a)
$$E_{x_1} = \int_0^1 \sin^2(4\pi t) dt = \int_0^1 \frac{1}{2} dt - \frac{1}{2} \int_0^1 \cos(8\pi t) dt = 1/2$$

(b)
$$E_{x_2} = \int_{0.5}^{1.5} dt = 1$$

- (c) The two signals are orthogonal therefore $E_x = 1/2 + 1 = 3/2$.
- (d) Using time shifting property, we get

$$G(\omega) = \operatorname{sinc}(\omega/2)e^{-j\omega}$$
.

2. (a) Since
$$\frac{50}{\pi} \mathrm{sinc}(50t) \Longleftrightarrow \mathrm{rect}(\omega/100),$$

then

$$S(\omega) = \frac{1}{2} \operatorname{rect}(\frac{\omega - 100}{100}) + \frac{1}{2} \operatorname{rect}(\frac{\omega + 100}{100}).$$

(b) In the time domain x(t) is given by

$$x(t) = \frac{25}{\pi} \operatorname{sinc}(50t) + \frac{25}{\pi} \operatorname{sinc}(50t) \cos 200t$$

Its Fourier transform is shown below. In the Figure we also show the effect of the filter $H(\omega)$

(c)
$$Y(\omega) = \frac{1}{2} \operatorname{rect}(\frac{\omega}{60})$$

(d)
$$y(t) = \frac{15}{\pi} \operatorname{sinc}(30t).$$

- 3. (a) The full AM signal is $(A + m(t)) \cos \omega_c t$. In our case, the AM modulated signal is $(A+10\cos(100t)) \cos 10000t$. Therefore $m(t) = 10\cos 100t$.
 - (b) To use an envelop detector, we need $(A + 10\cos(100t)) \ge 0$ for all t. Therefore the minimum value of A is A = 10.
 - (c) The efficiency is defined as $\eta = \frac{P_s}{P_c + P_s}$. $P_c = A^2/2 = 20^2/2 = 200$. $P_s = P_{m(t)}/2 = 50/2 = 25$. Therefore $\eta = 25/225 = 1/9$.
 - (d) In the case A=10, the efficiency is $\eta=1/3$. This is the maximum achievable efficiency.
- 4. (a) The bandwidth of the baseband signal is B = 4000 Hz.
 - (b) The peak value of m(t) is 10π .
 - (c) Using Carson's rule the effective bandwidth is given by

$$B_{FM} = 2(\Delta f + B) = 2(\frac{k_f m_p}{2\pi} + B).$$

The bandwidth of the baseband signal is $B=4000 {\rm Hz}$. $B_{FM}=10000 {\rm Hz}$ and $m_p=10\pi$. Therefore

$$B_{FM} = 2(\Delta f + B) = 2(\frac{k_f m_p}{2\pi} + B) = 2(5k_f + 4000) = 10000$$

and it follows $k_f = 200$.

(d) Since an angle modulated signal is essentially a sinusoidal signal with constant amplitude, we have

$$P_{EM} = A^2/2 = 100/2 = 50.$$

5. The characteristic impedance of the line is

$$Z_0 = \sqrt{L_0/C_0} = \sqrt{0.25 \cdot 10^{-6}/100 \cdot 10^{-12}} = 50\Omega.$$

The voltage reflection coefficient is $K_v = (Z_L - Z_0)/(Z_L + Z_0) = 1/3$.

- (a) $V_{-} = K_{v}V_{+} = 5V$.
- (b) $I_{-} = -K_{v}I_{+} = -K_{v}V_{+}/Z_{0} = 0.1$ A
- (c) $T_p = 1 |K_v|^2 = 1 1/9 = 8/9$