
Solutions Calculus and Vector Calculus

1. (Unseen)

(a) Given the function f(x, y) = x2 cos y, with x = x(t) and y = y(t), we
find (we use the notation ẋ ≡ dx

dt
, ẏ ≡ dy

dt
)

(i)
df

dt
= 2xẋ cos y − x2ẏ sin y.

[4]

(ii)
d2f

dt2
= (2ẋ2 + 2xẍ− x2ẏ2) cos y − (4xẋẏ + x2ÿ) sin y.

[6]

(b) (i) The Jacobian matrix of the coordinate transformation is

J =

(

∂x
∂s

∂x
∂t

∂y
∂s

∂y
∂t

)

=

(

cos t −s sin t
cos(s− t) − cos(s− t)

)

.

[4]

(ii) The partial derivatives ∂f
∂s

and ∂f
∂t

are given by

∂f

∂s
=

∂f

∂x

∂x

∂s
+

∂f

∂y

∂y

∂s
= (2x− y) cos t− x cos(s− t) =

= (2s cos t− sin(s− t)) cos t− s cos t cos(s− t)

∂f

∂t
=

∂f

∂x

∂x

∂t
+

∂f

∂y

∂y

∂t
= −(2x− y)s sin t+ x cos(s− t) =

= −(2s cos t− sin(s− t))s sin t+ s cos t cos(s− t).

[6]

2. (Unseen)

(i) The stationary points of the function f(x, y) = xy− log(x2 + y2) are
given by the solutions of the equations

∂f

∂x
= y − 2x

x2 + y2
= 0,

∂f

∂y
= x− 2y

x2 + y2
= 0.
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[2]

Note that the point (0, 0) is not in the domain of definition of the
function. Solving the system, we find

x

y
=

y

x
=⇒ x2 = y2 =⇒ y = ±x,

and thus

x = ± 2x

2x2
=⇒ x2 = ±1.

This equation has no real solutions if we choose the − sign. Thus we
must choose the + sign and we finally find x = y = ±1. Thus f has
two stationary points:

P1 = (1, 1), P2 = (−1,−1).

[4]

(ii) In order to determine the nature of the stationary points, we need to
calculate the second derivatives:

∂2f

∂x2
= − 2

x2 + y2
+

4x2

(x2 + y2)2
=

2(x2 − y2)

(x2 + y2)2
,

∂2f

∂y2
= − 2

x2 + y2
+

4y2

(x2 + y2)2
=

−2(x2 − y2)

(x2 + y2)2
,

∂2f

∂x∂y
= 1 +

4xy

(x2 + y2)2
.

[4]

At the point P1 = (1, 1) we find

fxx = fyy = 0, fxy = 2 =⇒ fxxfyy − f 2
xy = −2 < 0.

We conclude that P1 is a saddle point. [2]

Similarly, at the point P2 = (−1,−1) we find

fxx = fyy = 0, fxy = 2 =⇒ fxxfyy − f 2
xy = −2 < 0.

We conclude that also P2 is a saddle point. [2]

(iii) The Taylor expansion of a function f around a point P = (x0, y0) up
to and including second order terms is given by

f(x, y) = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)+

1

2

[

fxx(x0, y0)(x− x0)
2 + fyy(x0, y0)(y − y0)

2 + 2fxy(x0, y0)(x− x0)(y − y0)
]

+ . . .
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Thus the expansion around P1 = (1, 1) is given by

f(x, y) = 1− log 2 + 2(x− 1)(y − 1),

[3]

and the expansion around P2 = (−1,−1) is given by

f(x, y) = 1− log 2 + 2(x+ 1)(y + 1).

[3]

3. (Unseen)

(i) We calculate

y =
cosx√

x
,

y′ = −sin x√
x

− cosx

2x3/2
,

y′′ = −cos x√
x

+
sin x

x3/2
+

3 cosx

4x5/2
.

[2]

Plugging into the left-hand side of the differential equation, we find

−cos x√
x

+
sin x

x3/2
+

3 cosx

4x5/2
− 1

x

[

sin x√
x

+
cosx

2x3/2

]

+

(

1− 1

4x2

)

cosx√
x

= 0.

[2]

(ii) If y1(x) is a solution of the second order homogeneous ODE

y′′ + a(x)y′ + b(x)y = 0,

then a second solution is given by

y2(x) = y1(x)Y (x)

where

Y (x) =

∫ x e−
∫ t a(s)ds

y21(t)
dt.

[2]

In our case we find

Y (x) =

∫ x t

cos2 t
e−

∫ t 1

s
ds =

∫ x t

cos2 t
e− log t =

∫ x 1

cos2 t
= tan x,
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and thus

y2(x) = y1(x)Y (x) = y1(x) tan x =
sin x√

x
.

[2]

(iii) The Wronskian is given by

W (x) = det

(

y1(x) y2(x)
y′1(x) y′2(x)

)

= det

(

cos x√
x

sinx√
x

− sinx√
x
− cos x

2x3/2
cos x√

x
− sinx

2x3/2

)

=
1

x
,

which is always different from 0. [4]

(iv) According to the method of variation of parameters, a particular
solution is obtained as

yp(x) = U(x)y1(x) + V (x)y2(x),

where [2]

U(x) = −
∫ x y2(t)r(t)

W (t)
dt = −

∫ x (sin t/
√
t)t−1/2

1/t
dt = −

∫ x

sin t dt = cosx,

V (x) =

∫ x y1(t)r(t)

W (t)
dt =

∫ x (cos t/
√
t)t−1/2

1/t
dt =

∫ x

cos t dt = sin x.

Thus we get

yp(x) = cosx
cos x√

x
+ sin x

sin x√
x

=
1√
x

[4]

(v) The general solution is

y(x) = A
cosx√

x
+B

sin x√
x

+
1√
x
,

where A and B are arbitrary real numbers. [2]

4. (Unseen but the same question with the variable x and y swapped was
in the coursework.)

(a) The interior of the torus is described by the inequality y2 + (3 −√
x2 + z2)2 ≤ 4. We use the usual substitution y = ρ sin u and

3−
√
x2 + z2 = ρ cosu with ρ ≥ 0 and the condition becomes ρ2 ≤ 4

with no constraint on u. Therefore ρ ∈ [0, 2] and, since cos and sin are
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2π-periodic, to get the full torus only once, we can take u ∈ [0, 2π].
Now looking at 3−

√
x2 + z2 = ρ cos u, we rearrange it into x2+z2 =

(3 − ρ cosu)2. Using again the standard identity cos2 v + sin2 v = 1
suggests setting x = cos v(3− ρ cosu) and z = sin v(3− ρ cosu). The
equality is then satisfied with no constraint on v so, as before, we
take v ∈ [0, 2π]. Summarizing, we get the parametrization

~r(ρ, u, v) =





cos v(3− ρ cosu)
ρ sin u

sin v(3− ρ cos u)



 , (ρ, u, v) ∈ [0, 2]×[0, 2π]×[0, 2π] .

[10]

(b) Using our parametrization, we compute

(

∂~r

∂ρ
× ∂~r

∂u

)

· ∂~r
∂v

=
− cos v cosu ρ cos v sin u − sin v(3− ρ cos u)

sin u ρ cosu 0
− sin v cosu ρ sin v sin u cos v(3− ρ cosu)

= −ρ(3 − ρ cosu) .

So the volume element is dV = ρ|3 − ρ cosu| dρ du dv = ρ(3 −
ρ cosu) dρ du dv since ρ cosu ≤ 2 as can be seen from the ranges
on the parameters. [4]

Then,

V =

∫ 2

0

∫ 2π

0

∫ 2π

0

ρ(3− ρ cosu) dρ du dv

= 12π2

∫ 2

0

ρ dρ− 2π

∫ 2

0

∫ 2π

0

ρ2 cosu dρ du

= 24π2 .

[6]

5. (Unseen but the same question with the roles of y and z swapped was in
last year’s exam.)

Consider the ellipsoid E with Cartesian equation in standard form

x2

4
+

y2

12
+

z2

5
= 1 .

(a) The tangent plane to E at a point P = (x, y, z) has normal vector

given by
−→∇f(x, y, z) where f(x, y, z) = x2

4
+ y2

12
+ z2

5
− 1. Here

−→∇f(x, y, z) =





x/2
y/6
2z/5



 .

Turn over . . .



[3]

This vector should be orthogonal to the normal vector to the plane
z = 0, that is the vector

~n =





0
0
1



 .

[2]

So ~n · −→∇f(x, y, z) = 0, which gives z = 0. [1]

So the points solutions of the required conditions satisfy

x2

4
+

y2

12
= 1 , z = 0 .

This is the ellipse in the xOy plane corresponding to the intersection
of the ellipsoid with the z = 0 plane. [4]

(b) We first find a parametrization for C. Setting x = 2 cosφ and y =
2
√
3 sin φ the equation of the ellipse is satisfied with no constraint

on φ. To get the full ellipse once, it is enough to take φ ∈ [0, 2π].
Therefore

~r(φ) =





2 cosφ

2
√
3 sin φ
0



 , φ ∈ [0, 2π] .

[5]

Then, using the definition of a line integral, we can compute

∫

C

−→
V · d~r =

∫ 2π

0





−2
√
3 sin φ

2 cosφ
0



 ·





−2 sin φ

2
√
3 cosφ
0



 dφ

= 4
√
3

∫ 2π

0

(sin2 φ+ cos2 φ)dφ

= 8π
√
3

[5]

Remark: the opposite answer is also accepted as the orientation of
C has not been specified.

6. (Unseen)

This question is based on the use of Stokes theorem to transform a line
integral around a closed contour into a surface integral. The curl of the
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vector field being constant, this essentially amounts to computing the
surface area of the ellipse here. So if the students remember the formula,
they can use directly. Note that the same exercise was done in class (with
a slightly different ellipse).

(a) Let
−→
V (x, y, z) = y(z−2)~i+z(x−2)~j+x(y−2)~k. A direct computation

gives
−→∇ ×−→

V = 2~i+ 2~j + 2~k. [4]

(b) Stokes theorem: Let
−→
V be a vector field with continuous partial

derivatives over a surface S whose boundary is a closed curve Γ.
Then

∫

Γ

−→
V · d~r =

∫∫

S

(
−→∇ ×−→

V ) · −→dS .

[2]

(c) Here the given ellipse plays the role of Γ in the theorem and lies in
the plane z = −2 parallel to xOy. The surface S can be taken to
the flat surface in this plane enclosed by the ellipse. In particular,

this means that the surface element vector
−→
dS only has a nonzero

component along ~k:
−→
dS = de~k. This means that the surface integral

reduces to
∫∫

S

2 dS = 2

∫∫

S

dS .

So the line integral we are after is simply twice the area of the surface
enclosed by the ellipse. The parameters of the latter are a = 4 and
b = 3 so using the formula for the area A = πab, we get finally

∫

Γ

−→
V · d~r = 24π .

Note that this question can also be done in a more pedestrian way by
using a parametrization for the interior of the ellipse and computing
explicitely the surface integral or even by computing the line integral
directly. The students should go for the solutions presented here as
we have discussed a very similar example in class. [14]
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