

MATHEMATICAL TRIPOS Part III

Friday 10 June, 2005 9 to 12

PAPER 1

TOPICS IN GROUP THEORY

Attempt **THREE** questions. There are **SIX** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 1 Let G be a group, let P be a Sylow p-subgroup of G. Show that if $|P : P \cap Q| \ge p^a$ for all Sylow p-subgroups Q of G different from P, then the number n_p of Sylow p-subgroups of G is congruent to 1 modulo p^a .

Let G be a simple group of order $2^e \cdot 3 \cdot 5$. Show that G has a subgroup of order 2^e or 2^{e-1} with normalizer of index 5 in G. Deduce that G is isomorphic to A_5 .

Show that the group $SL_2(5)$ has order 120 and its centre Z has order 2. Show that the quotient $PSL_2(5)$ is isomorphic to A_5 . Prove that $SL_2(5)$ has a unique element of order 2. [Note that any element of order 2 can be diagonalized.] Deduce that $SL_2(5)$ has no subgroup of index 2.

2 Prove that A_n is simple for $n \ge 5$.

Show that A_6 has an automorphism which is not induced by conjugation by any element of S_6 .

Show that Aut A_n is isomorphic to S_n for $n \ge 5$, unless n = 6. [Bochert's bound on the order of primitive group can be used without proof.]

3 Prove that a minimal normal subgroup K of the finite group G is a direct product of isomorphic simple groups (possibly cyclic of prime order). Deduce that a maximal subgroup G of a non-abelian simple group X is the normalizer in X of a subgroup K of this form.

Prove that A_5 has three conjugacy classes of maximal subgroups, consisting of subgroups of orders 12, 10 and 6, respectively.

Prove that $GL_3(2)$ has three conjugacy classes of maximal subgroups, two of order 24 and one of order 21.

[You may use without proof that both A_5 and $GL_3(2)$ are simple. Note that they contain no proper non-abelian simple subgroups.]

Paper 1

4 Define the transfer homomorphism. Prove that your definition is independent of the choice of transversal, and the mapping obtained is in fact a homomorphism.

State and prove the Burnside Transfer Theorem.

Let G be a primitive permutation group of degree p, where p is a prime number of the form p = 2q + 1, with q a prime. Show that if G contains no odd permutations, then G is simple, or G has order pq.

[Use the Frattini argument. Note that the normalizer in A_p of a Sylow p-subgroup has order pq.]

5 Write an essay on series in finite groups and some of the properties defined in terms of series. Include some proofs.

6 What is a Hall subgroup of a finite group? State the Theorem of P. Hall on Hall subgroups in finite soluble groups, and prove the existence part.

What is a Sylow basis of a finite group? Prove the existence and conjugacy of Sylow bases in finite soluble groups.

How many Sylow bases are there in S_4 ? And in the semidirect product $5^4 \rtimes S_4$ of an elementary abelian 5-subgroup of order 5^4 by S_4 , with the action of S_4 induced by the natural permutation action on a basis of 5^4 ? Justify your answers.

END OF PAPER