

MATHEMATICAL TRIPOS Part III

Wednesday 7 June, 2006 9 to 12

PAPER 52

THE STANDARD MODEL

Attempt **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS Cover sheet

Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 2

1 Write an essay on the problem of introducing massive vector bosons into quantum field theory.

2 Explain, with the aid of a Z_2 -symmetric theory, how spontaneous symmetry breaking occurs in a quantum field theory.

Write down the formula for the partial width Γ of an on-shell particle of mass m that decays to two on-shell particles, in terms of the matrix element \mathcal{M} .

The Feynman rule for a vertex coupling a Higgs to W^+W^- is $igM_Wg_{\mu\nu}$. Assuming $M_H > 2M_Z > 2M_W$, calculate the partial width for the decay $H \to W^+W^-$ in terms of the Higgs mass M_H , $x = M_W/M_H$ and $G_F = \sqrt{2}g^2/8M_W^2$.

From this answer, write down the analogous partial width of the decay $H \rightarrow ZZ$ in terms of $y = M_Z/M_H$.

[You may assume, for summations over the W polarisation states λ , that

$$\sum_{\lambda} \epsilon^*_{\mu}(p,\lambda)\epsilon_{\nu}(p,\lambda) = -g_{\mu\nu} + \frac{p^{\mu}p^{\nu}}{M_W^2}.$$
]

3

3 Let *C* be an anti-symmetric matrix such that $C^{-1}\gamma^{\mu}C = -(\gamma^{\mu})^{t}$, where $CC^{\dagger} = 1$ and *t* denotes the transpose. Show that if $\psi(x)$ satisfies the free Dirac equation then so does $C(\bar{\psi}(x))^{t}$. Given that $\hat{C}\psi(x)\hat{C}^{-1} = \eta_{C}C\bar{\psi}(x)^{t}$, find how $\bar{\psi}(x)$ transforms under charge conjugation \hat{C} .

How does one expect creation and annihilation operators to behave under \hat{C} ? By considering the expansion of Dirac fields in terms of creation and annihilation operators, show that

$$v(p,s) = C\bar{u}(p,s)^t,$$

where v(p, s) and u(p, s) are positron and electron spinors respectively.

How does the vector current $j_{\mu} = \bar{\psi}\gamma_{\mu}\psi$ transform under \hat{C} ? What implications does this have for the photon field A_{μ} ? Show that $C^{-1}\gamma_5 C = \gamma_5^t$ and hence determine the behaviour of the axial current $j_{5\mu} = \bar{\psi}\gamma_{\mu}\gamma_5\psi$ under \hat{C} . What implication do the above results have for the \hat{C} invariance or non-invariance of a $(j_{\mu} - j_{5\mu})A^{\mu}$ type interaction?

Under a parity transformation \hat{P} , $\hat{P}\psi(x)\hat{P}^{-1} = \eta_P\gamma^0\psi(x_P)$, where $x_P^{\mu} = (t, -\mathbf{x})$. How do the vector and axial currents transform under \hat{P} ?

How do $(j_{\mu} - j_{5\mu})V^{\mu}$ interactions transform under the combined action of $\hat{C}\hat{P}$ if V^{μ} is a real vector field? What does this imply about the interactions of the Z boson in the Standard Model?

[You may find the fact that $\gamma_0\gamma_0^{\dagger} = 1$ useful.]

4 Justify the fact that the renormalised coupling in a quantum field theory $g(\mu^2)$ is a function of the renormalisation scale μ and show that $\alpha = g^2/4\pi$ satisfies a renormalisation group equation of the form

$$\frac{d\alpha}{d(\ln\mu^2)} = b_0 \alpha^2 + O(\alpha^3)$$

where b_0 is a real constant.

Dropping the $O(\alpha^3)$ terms, solve the equation above subject to the boundary condition $\alpha(\mu_0^2) = \alpha_0$. If $b_0 = -\beta_0$, where β_0 is a positive constant, show that the solution may be rewritten as

$$\alpha(\mu^2) = \frac{1}{\beta_0 \ln(\mu^2/\Lambda^2)} , \qquad (*)$$

and determine $\ln \Lambda^2$ in terms of μ_0 , α_0^{-1} and β_0 . Explain what happens as $\mu^2 \to \infty$, and also what happens as μ^2 becomes small, and briefly discuss the implications for strong interaction physics. Roughly what size should Λ be, assuming β_0 is of order unity?

The explicit expression for β_0 in QCD is

$$\beta_0 = \frac{11N - 2n_f}{12\pi}$$

where N is the number of colours and n_f is the number of flavours of quark Dirac spinors. Calculate β_0 for the QCD coupling in the Standard Model.

Quarks that have masses larger than μ are not included in the effective field theory. As μ increases across a quark mass threshold m_q , $n_f \to n_f + 1$. In the solution (*), Λ_{n_f} depends on n_f in such a way that $\alpha(\mu^2)$ is continuous at a quark mass threshold. Show that if Λ_5 appears in the formula (*) for the coupling for $\mu^2 > m_b^2$ and Λ_4 for $\mu^2 < m_b^2$, where m_b is the bottom quark mass, then

$$\Lambda_5 = \Lambda_4 \left(\frac{m_b}{\Lambda_4}\right)^{-2/23}$$

END OF PAPER

Paper 52