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THE STANDARD MODEL

Attempt THREE questions.

There are four questions in total.

The questions carry equal weight.

You may not start to read the questions

printed on the subsequent pages until

instructed to do so by the Invigilator.
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1 Consider a scalar field theory with a scalar with components φr. The potential for
the field V (φ) is invariant under infinitesimal transformations

δφ = iTaχaφ , a = 1, . . .dimG ,

where Ta are the dimG generators of invariance group G in the representation defined
by φ and χa are some infinitesimal parameters. The potential has a degenerate vacuum
labelled by Φ0. ti are the generators of H, which is the stability group for φ0 ∈ Φ0, i.e.

tiφ0 = 0 , i = 1, . . .dimH .

Choosing a basis for the generators such that

Ta = (ti, Tâ) ,

with Tâ orthogonal to ti, prove, by expanding about the vacuum φ0, that there are
dimG− dimH massless scalars.

If G = O(n), the rotation group in n dimensions, and H = O(n − 1) then how
many massless scalars are there in this case?

The Lagrangian for the gauge-scalar sector of the standard model may be written
as,

L = −1
4

Fµν ·Fµν −
1
4
GµνGµν + (Dµφ)†Dµφ−

1
2
λ
(
φ†φ− v2

2
)2
,

where
Fµν = ∂µAν − ∂νAµ + gAµ ×Aν , Gµν = ∂µBν − ∂νBµ

(Dµφ) = (∂µ + ig 1
2A

µ(x) · σ + i 12g
′Bµ(x))φ,

and Aµ is the vector of SU(2) gauge fields, Bµ is the U(1)Y gauge field and φ is a complex
scalar doublet. σi are the Pauli matrices and g′ may be written as g tan θW .

Explain why the scalar doublet can be written as

φ(x) = exp(−in(x).σ + in3(x))
1√
2

(
0

v +H(x)

)
,

where n = (n1, n2, n3), and why in unitary gauge we can eliminate the fields in
exp(−in(x).σ + in3(x)) completely.

Determine the simultaneous mass and charge eigenstates for the gauge fields by
writing the scalar-boson interactions in terms of the physical fields Zµ, W±

µ , and show
that the photon field Aµ decouples from the scalar and is massless. Find also the mass of
the scalar field and the the relationship between the masses mW and mZ .
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2 The covariant derivative in the electroweak sector of the Standard Model is defined
by

Dµ = (∂µ + ig 1
2A

µ(x) · σ + iY g′Bµ(x)),

where g is the SU(2) coupling constant, g′ is the U(1)Y coupling constant, σi are the Pauli
matrices and Y is the hypercharge. Describe the SU(2) and hypercharge representations
and quantum numbers for the leptons. Using

W+µ =
1√
2
(Aµ

1 − iAµ
2 ), W−µ =

1√
2
(Aµ

1 + iAµ
2 ),

show that the interaction of the W+ boson with the lepton fields may be written as

LW+lep = − g

2
√

2
W+µν̄lγµ(1− γ5)l,

for each family of leptons. Write the corresponding term for the W− boson. Explain
briefly why the corresponding interaction term is more complicated for quarks.

Show that at low energies it is equivalent to using an effective Lagrangian density

LWeff = −GF√
2

(Jµ(x)†Jµ(x)) ,

where GF =
√

2g2/8m2
W .

Consider the decay
π−(p) → e−(k) + νe(q).

The matrix element for this decay is

M = −GF√
2
〈e−(k) νe(q)|eγα(1− γ5)νe|0〉 〈0|Jhad.

α |π−(p)〉.

Explain why only the axial part of the hadronic current contributes to 〈0|Jhad.
α |π−(p)〉.

By considering this matrix element prove that the decay rate contains a factor
m2

e(m
2
π − m2

e), and hence vanishes in the limit me → 0. (It is useful to use the Dirac
equation for the spinors in momentum space.) Explain physically why the matrix element
must vanish in this limit.

[You may use
tr {γ.kγ.q} = 4k · q

tr {γ5γ.kγ.q} = 0

tr {γµ} = tr {γ5γµ} = 0.]
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3 Under charge conjugation we assume

ψ(x) −→ ψC(x) , ψC(x) = Cψ(x)t ,

with t denoting transpose. The matrix C is then chosen to ensure ψC(x) satisfies the
Dirac equation. Prove that C(γµ)tC−1 = −γµ. Show also that under charge conjugation
ψ̄(x) → −ψt(x)C−1. (Assume C† = C−1.)

Explain why a current interaction

JµVµ = ψ̄(x)γµ(1− γ5)ψ(x)Vµ,

is not invariant under parity or charge conjugation separately but is invariant under the
combined transformation.

Under a time reversal transformation T̂ψ(x)T̂−1 = B−1ψ(xT ) and T̂ψ(x)T̂−1 =
ψ(xT )B where B = γ5C and T̂ is an antilinear transformation, i.e. it takes the complex
conjugate of numbers. Show that B(γ0∗,−γ∗)B−1 = (γ0, γ), and that the above current
interaction is invariant under time reversal.

The K0 and its anti-particle K̄0 are pseudoscalar mesons with dominant quark
structure s̄d and d̄s. Under CP we can define

ĈP̂ |K0〉 = |K̄0〉 , ĈP̂ |K̄0〉 = |K0〉 .

The mass eigenstates of the system are the eigenvectors of the matrix

M =
(
〈K0|H ′|K0〉 〈K0|H ′|K̄0〉
〈K̄0|H ′|K0〉 〈K̄0|H ′|K̄0〉

)
=

(
M11 M12

M21 M22

)
,

where H ′ is an effective Hamiltonian arising from weak processes that mix |K0〉 and |K0〉,
and M11 = M22. Draw a Feynman diagram representing one such mixing process. Show
that if H ′ is not invariant under CP then M12 6= M21 and that the mass eigenstates are
equal to the CP = +1 and −1 eigenstates

|K1
0〉 =

1√
2

(
|K0〉+ |K̄0〉

)
, |K2

0〉 =
1√
2

(
|K0〉 − |K̄0〉

)
,

up to small corrections proportional to

ε =
√
M12 −

√
M21√

M12 +
√
M21

.

[Under parity transformations P

ψ(x) → γ0ψ(xP ) ψ̄(x) → ψ̄(xP )γ0 Vµ(x) → V µ(xP ).

Under charge conjugation C Vµ(x) → −Vµ(x), and under time reversal Vµ(x) → V µ(xT )]
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4 Show that the total cross-section for e−(p1) + e+(p2) → γ∗(p1 + p2 = q) →
q(k1) + q(k2) at lowest order is equal to

dσe−e+→qq̄

dΩ
=

α2

4q2
Q2

q (1 + cos2 θ) ,

where α = e2/4π, θ is the angle between the outgoing quark and the axis of the incoming
electron and positron in the centre of mass frame, and Qq is the fractional quark charge.
Show that integrating over the solid angle

σe−e+→qq =
4πα2

3q2
Q2

q .

You may assume that
√
q2 � mq,me.

Explain why at leading order this means that (to a good approximation)

σe−e+→hadrons =
4πα2

3q2
3

∑
f

Q2
f ,

Discuss why beyond leading order the cross-section for quark-antiquark production is not
a well-defined physical quantity, and how one may calculate the total hadron cross-section.

Beyond LO the cross-section may be written as

σe−e+→hadrons =
4πα2

3q2
3

∑
f

Q2
f K(αs(µ2), q2/µ2) ,

where at O(α2
s)

K(αs(µ2), q2/µ2) = 1 +
αs(µ2)
π

+
α2

s(µ
2)

π2

(
1.99− 0.11nf − π

β0

4π
ln(q2/µ2)

)
.

One way of choosing the arbitrary scale µ is to demand that

dK(αs(µ2), q2/µ2)
d lnµ2

= 0.

Using the renormalization group equation for the strong coupling

dαs

d lnµ2
= −β0

4π
α2

s,

where β0 = 11 − 2/3nf , and nf is the number of quark flavours, determine the value of
µ2 this prescription imposes.

[You may use tr (γαγβγγγδ) = 4(gαβgγδ + gαδgβγ − gαγgβδ), and

σ =
1

4F
1
4

∑
spins

∫
d3k1

(2π)32Ek1

d3k2

(2π)32Ek2

(2π)4δ4(p1 + p2 − k1 − k2)|M |2

where the flux factor F = 4
√

(p1.p2)2 −m2
1m

2
2 = 2q2, where we let m1,m2 → 0.]
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