

MATHEMATICAL TRIPOS Part III

Friday 6 June 2003 9 to 12

PAPER 50

STRING THEORY

Attempt **THREE** questions.

There are **five** questions in total. The questions carry equal weight. Candidates should note that trivial errors in numerical factors will not be penalized.

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

2

1 Write down the action that describes the dynamics of a relativistic bosonic string moving in flat *d*-dimensional Minkowski space-time. How is the string coupling constant related to the topology of the world-sheet?

What are the local symmetries of this action? Outline how these can be used to fix the conformal gauge, leading to the presence of Faddeev–Popov ghost and anti-ghost fields in the quantum gauge-fixed action (you need not give a detailed discussion of the Faddeev–Popov formalism).

The BRST charge, Q, generates a fermionic symmetry of the gauge-fixed action and is nilpotent $(Q^2 = 0)$ when d = 26. How may Q be used to define physical states of the string?

The contribution of the modes of the ghost and anti-ghost fields $(c_m \text{ and } b_m)$ to the Virasoro generators is given by $L_m^{(b,c)} = \sum_n (m-n) b_{m+n} c_{-n}$. Show that

$$[L_m^{(b,c)}, b_n] = (m-n) b_{m+n}$$
 and $[L_m^{(b,c)}, c_n] = -(2m+n) c_{m+n}.$

For the open bosonic string Q has the form

$$Q = \sum_{n} : c_n \left(L^{\alpha}_{-n} + \frac{1}{2} L^{(b,c)}_{-n} \right) : -c_0 \,,$$

where L_m^{α} are the Virasoro generators obtained from the world-sheet bosons. Show that physical states $|\phi\rangle$, satisfying

$$b_n |\phi\rangle = 0 = c_n |\phi\rangle$$
, for $n > 0$, $b_0 |\phi\rangle = 0$,

are those that satisfy the standard Virasoro conditions.

[You may use the anticommutation relations $\{b_m, c_n\} = \delta_{m+n,0}$.]

Paper 50

3

2 The action for a bosonic string propagating in 26-dimensional Minkowski space-time is given in the conformal gauge by

$$A[X] = -\frac{1}{4\pi\alpha'} \int d\tau d\sigma \,\partial_{\alpha} X^{\mu} \partial^{\alpha} X_{\mu}$$

where $\alpha = 0, 1$ and $\mu = 0, 1, \ldots, 25$. Determine the general solution of equations of motion for the closed string, thereby deducing the expansion of X^{μ} in terms of the left-moving and right-moving mode coefficients, α_m^{μ} and $\tilde{\alpha}_m^{\mu}$.

Write down the closed-string physical state conditions in terms of Virasoro operators, $L_m = \frac{1}{2} \sum_n : \alpha_{m-n} \cdot \alpha_n :$. Show that the massless states of the closed bosonic string are given by $\zeta_{\mu\nu} \alpha_{-1}^{\mu} \tilde{\alpha}_{-1}^{\nu} |0; p\rangle$, where $|0; p\rangle$ is the ground state of momentum p^{μ} satisfying $\alpha' p^2 = 4$ and $\zeta_{\mu\nu}$ satisfies conditions that should be specified.

[You may use $[\alpha_m^{\mu}, \alpha_n^{\nu}] = m \eta_{\mu\nu} \delta_{m+n,0} = [\tilde{\alpha}_m^{\mu}, \tilde{\alpha}_n^{\nu}]$ and $[\alpha_m^{\mu}, \tilde{\alpha}_n^{\nu}] = 0$, where $\eta_{\mu\nu}$ is the Minkowski space-time metric.]

Now consider the situation in which the X^1 is periodic so that $X^1 \equiv X^1 + 2\pi R$ where R is the radius of the periodic dimension. How does the mode expansion for X^1 depend on R?

Enumerate the massless states for generic values of R. Find the extra massless states that arise at the 'self-dual' point, $R = \alpha'/R$.

3 The amplitude for the scattering of M ground states (tachyons) of the closed bosonic string is given by the functional integral

$$T_M(\{k_r\}) = \int \prod_{r=1}^M d^2 z_r \int DX \prod_{r=1}^M V_0(k_r, z_r) \exp(-A[X]) \rangle.$$

In this expression A[X] is the bosonic string action on a flat euclidean world-sheet that spans the complex plane and each tachyon vertex operator is given by $V_0(k_r, z_r) = e^{ik_r \cdot X(z_r)}$ where z_r is the complex position of the operator on the world-sheet and k_r^{μ} is the momentum of the r'th tachyon state (and momentum conservation implies that $\sum_r k_r^{\mu} = 0$).

Explain how the amplitude can be written in the form

$$T_M(\{k_r\}) = \mathcal{N} \int \prod_{r=1}^M d^2 z_r \prod_{r< s} |z_r - z_s|^{\alpha' k_r \cdot k_s},$$

where \mathcal{N} is an irrelevant normalization constant.

Show that, provided $\alpha' k_r^2 = 4$, the integrand of the expression for A_M is invariant under SL(2, C) transformations

$$z_r \to \frac{az_r + b}{cz_r + d}$$
,

where a, b, c, d are complex and satisfy ad - bc = 1. Indicate how this symmetry can be used to fix $z_1 = -\infty$, $z_2 = 0$, $z_4 = 1$, and hence show that the four-tachyon amplitude reduces to (up to a momentum-independent factor)

$$T_4 = \frac{\Gamma(-1 - \frac{\alpha'}{4}s)\Gamma(-1 - \frac{\alpha'}{4}t)\Gamma(-1 - \frac{\alpha'}{4}u)}{\Gamma(2 + \frac{\alpha'}{4}s)\Gamma(2 + \frac{\alpha'}{4}t)\Gamma(2 + \frac{\alpha'}{4}u)},$$

where the Mandelstam invariants $s = -(k_1 + k_2)^2$, $t = -(k_1 + k_4)^2$ and $u = -(k_1 + k_3)^2$ satisfy $s + t + u = -16/\alpha'$. Comment on the singularities of this expression as a function of s, t and u.

[You may use

$$\int d^2 z \, |z|^{-A} \, |1-z|^{-B} = \pi \frac{\Gamma(1-\frac{1}{2}A)\Gamma(1-\frac{1}{2}B)\Gamma(1-\frac{1}{2}C)}{\Gamma(2-\frac{1}{2}(A+B))\Gamma(2-\frac{1}{2}(B+C))\Gamma(2-\frac{1}{2}(C+A))},$$

where C = 4 - A - B.]

Paper 50

4 Consider the theory obtained by adding the free Dirac action for world-sheet Majorana fermion fields, $\psi_a^{\mu}(\sigma, \tau)$ (a = 1, 2 being the world-sheet spinor index), to the bosonic string action in conformal gauge,

$$A = -\frac{1}{2\pi} \int d\tau d\sigma \, \left(\partial_+ X_\mu \partial_- X^\mu - \psi_2^\mu \partial_+ \psi_2{}_\mu - \psi_1^\mu \partial_- \psi_1{}_\mu\right) \,,$$

where $\partial_{\pm} = \partial_{\tau} \pm \partial_{\sigma}$. Show that the combined action possesses a global fermionic symmetry (world-sheet supersymmetry) under the transformations

$$\delta X^{\mu} = \epsilon_1 \psi_1^{\mu} + \epsilon_2 \psi_2^{\mu}, \qquad \delta \psi_1^{\mu} = \partial_+ X^{\mu} \epsilon_1 \qquad \delta \psi_2^{\mu} = \partial_- X^{\mu} \epsilon_2 \,,$$

where ϵ_1 and ϵ_2 are Grassmann-valued components of a constant world-sheet spinor parameter.

By varying the fields in the action, show that there are two possible boundary conditions that the fermionic fields for a closed string may satisfy and obtain the equations of motion? Deduce the expansions of these fields in terms of mode coefficients ψ_{1m}^{μ} and ψ_{2m}^{μ} and state, without proof, their anti-commutation relations.

In the light-cone gauge in the critical dimension (d = 10) the excited physical string states are expressed in terms of the transverse components of the non-zero modes of $\psi_a^i(\sigma, \tau)$ and $X^i(\sigma, \tau)$ (i = 1, ..., 8). For the open string the masses of these states are given by

$$\alpha'(\text{Mass})^2 = N^{\alpha} + N^{\psi} - a \,,$$

where $N^{\alpha} = \sum_{n>0} \alpha_n^{\dagger i} \alpha_n^i$, $N^{\psi} = \sum_{n>0} n \psi_n^{\dagger i} \psi_n^i$ and the normal ordering constant takes the values a = 1/2 or a = 0, depending on the boundary conditions. [Note that for an open string $\psi_{1\,m}^{\mu} = \psi_{2\,m}^{\mu} \equiv \psi_m^{\mu}$.]

Write down all the open-string physical states up to and including the states with $\alpha'(\text{Mass})^2 = 1$. Outline *briefly* how a truncation of the space of states might lead to a theory with no tachyon and with equal numbers of fermionic and bosonic states at each mass level.

5 Answer **one** of the following:

(a) Discuss the behaviour of the density of states of the closed bosonic string at asymptotically large mass levels and the occurrence of a phase transition at the Hagedorn temperature.

(b) Explain how general relativity coupled to matter arises from string theory in the 'low energy' limit.

Paper 50