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1 Let X1, . . . , Xn be independent and identically distributed random variables with
distribution function F . Define the empirical distribution function F̂n. State and prove
the Glivenko–Cantelli theorem.

Define the pth sample quantile F̂−1
n (p). Subject to a smoothness condition

which you should specify, write down the asymptotic distribution of the sample median,
F̂−1
n (1/2).

In each of the two cases below, compare the asymptotic variance of n1/2 F̂−1
n (1/2) with

that of n1/2X̄n, where X̄n = n−1(X1 + . . .+Xn):

(i) F = Φ, the standard normal distribution function

(ii) F has density f(x) = 6x(1− x) for x ∈ (0, 1).

2 Let Y1, . . . , Yn be independent and identically distributed with model function
f(y; θ), where θ ∈ Θ ⊆ Rd, and let θ0 denote the true parameter value. Derive the
asymptotic distribution of the maximum likelihood estimator θ̂n.

[You may assume that the usual regularity conditions hold. In particular, you may
assume a Taylor expansion for the score function U(θ), of the form

0 = U(θ̂n) = U(θ0)− j(θ0)(θ̂n − θ0) + op(n1/2),

as n→∞, where j(θ) is the observed information matrix at θ.]

Describe how this asymptotic result is related to the Wald test of H0 : θ = θ0
against H1 : θ 6= θ0. Now suppose that θ = (ψ, λ), where only ψ is of interest. Describe
the Wald test of H0 : ψ = ψ0 against H1 : ψ 6= ψ0.

Let Y1, . . . , Yn be independent and identically distributed with the inverse Gaussian
density

f(y;ψ, λ) =
( ψ

2πy3

)1/2

exp
{
− ψ

2λ2y
(y − λ)2

}
, y > 0, ψ > 0, λ > 0.

Show that the maximum likelihood estimator of ψ is

ψ̂ =
{

1
n

n∑
i=1

(
1
Yi
− 1
Ȳ

)}−1

,

where Ȳ = n−1(Y1 + . . .+ Yn).

Using the fact that Eψ,λ(Y1) = λ, show further that the Wald statistics for testing
H0 : ψ = ψ0 against H1 : ψ 6= ψ0 coincide in the two cases where λ is known and
where λ is unknown.
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3 Let X1, . . . , Xn be independent and identically distributed with distribution func-
tion F , and let X(n) = maxiXi. If G is a non-degenerate distribution function, what does
it mean for F to belong to the domain of attraction D(G) of G? What does it mean for
G to be max-stable? Prove that D(G) is non-empty if and only if G is max-stable.

[You may assume that if (Fn) is a sequence of distribution functions satisfying
Fn(anx+ bn)

d→ G1(x) as n→∞ and Fn(αnx+βn)
d→ G2(x), for non-degenerate G1, G2,

then G1(x) = G2(ax+ b), for some a ∈ (0,∞), b ∈ R.]

Let F (x) = 1 − 1/(x log x) for x > x0, where x0 log x0 = 1. By quoting a result
about regular variation, or otherwise, find a non-degenerate distribution function G such
that F ∈ D(G). Give expressions for constants an > 0 and bn such that, for all x ∈ R,

P
(X(n) − bn

an
6 x

)
→ G(x),

as n→∞.

By writing down an equation satisfied by F (an), show first that there exists n0 ∈ N
such that an < n for n > n0. Show further that an > n/ log n for n > n0, and finally that

an <
n

log n− log log n

for n > n0. Deduce that, for all x ∈ R,

P
(X(n) log n

n
6 x

)
→ G(x)

as n→∞.

4 Write an essay on exponential families, which should include the following:

(i) The definition of a full natural exponential family of order p

(ii) A calculation of the moment generating function of a random variable Y with
density in full natural exponential family form, and of expressions for the mean vector and
covariance matrix of Y

(iii) The general definition of an exponential family of order p, and of a (p, q) curved
exponential family, together with an example of the latter

(iv) An explanation of the existence and uniqueness of maximum likelihood esti-
mators in regular natural exponential families.
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5 Let f be a bounded density with a bounded, continuous second derivative f ′′

satisfying
∫∞
−∞ f ′′(x)2 dx < ∞, and let X1, . . . , Xn be independent and identically

distributed with density f . Define the kernel density estimator f̂h(x) with kernel K and
bandwidth h. Under conditions on h and K which you should specify, derive the leading
term of an asymptotic expansion for the bias of f̂h(x) as a point estimator of f(x).

Observing that Var{f̂h(x)} = (nh)−1R(K)f(x) + o{1/(nh)}, where R(K) =∫∞
−∞K(z)2 dz, and provided that f ′′(x) 6= 0, find the bandwidth hAMSE(x) which

minimises the asymptotic mean squared error of f̂h(x) at the point x. Write down
(or compute) the asymptotically optimal mean integrated squared error bandwidth,
hAMISE .

For f(x) = φ(x), the standard normal density, show that

inf
x∈R\{−1,1}

hAMSE(x)
hAMISE

=
( 9e5

8192

)1/10

.

[You may find it helpful to note that R(φ′′) = 3
8
√
π
.]

6 Let g : (a, b) → R be a smooth function with a unique minimum at ỹ ∈ (a, b)
satisfying g′′(ỹ) > 0. Sketch a derivation of Laplace’s method for approximating

gn =
∫ b

a

e−ng(y) dy.

[You may treat error terms informally. An explicit expression for the O(n−1) term
is not required.]

By making an appropriate substitution, use Laplace’s method to approximate

Γ(n+ 1) =
∫ ∞

0

yne−y dy.

Let p(θ) denote a prior for a parameter θ ∈ Θ ⊆ R, and let Y1, . . . , Yn be
independent and identically distributed with conditional density f(y|θ). Explain how
Laplace’s method may be used to approximate the posterior expectation of a function
g(θ) of interest.

END OF PAPER
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