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1 Explain briefly what is meant by a phase diagram. Give an example of a three-
dimensional phase diagram which contains a tricritical point and describe the nature of
the phase transitions which can occur.

Give an account of the Landau-Ginsberg (LG) theory of phase transitions illustrated
using scalar field theory and including a discussion of the following topics:

(a) The idea of an order parameter;

(b) The definition of the correlation length ξ and its rôle in LG theory;

(c) The distinction between first-order and continuous phase transitions and how their
occurrence is predicted in LG theory;

(d) The concept of universality and which properties are, and are not, universal at a
critical point;

(e) The idea of critical exponents and how they may be derived;

(f) The features of a tricritical point and how it occurs in LG theory.

You should clarify your account with diagrams which should be appropriately
labelled.

The critical indices β, γ, δ in the Ising model are defined by

M ∼ (−t)β (t < 0, h = 0), χ ∼ t−γ (t > 0, h = 0) , M ∼ h1/δ (t = 0, h > 0),

where M is the magnetization, χ is the susceptibility, t = (T−TC)/TC and h is the applied
magnetic field. Calculate β, γ, δ for both an ordinary critical point and a tricritical point
in LG theory.

Explain how the Ginsberg criterion shows that LG theory fails to predict the correct
critical exponents for a general critical point if the dimension D satisfies D ≤ Dc. Derive
the expression for Dc in the general case and show that

Dc = 4 for an ordinary critical point, Dc = 3 for a tricritical point.
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2 The Ising model in D dimensions is defined on a cubic lattice of spacing a with N
sites and with spin σr on the r-th site. The Hamiltonian is defined in terms of a set of
operators Oi({σ}) by

H(u, σ) =
∑
i

uiOi({σ}) ,

where the ui are coupling constants with u = (u1, u2, . . .) and σr ∈ {1,−1}. In particular,
H contains the term −h

∑
r σr where h is the magnetic field. The partition function is

given by
Z(u, C,N) =

∑
σ

exp(−βH(u, σ)− βNC) .

Define the two-point correlation function G(r) for the theory and state how the
correlation length ξ parametrizes its behaviour for r � ξ.

State how the magnetization M and the magnetic susceptibility χ can be deter-
mined from the free energy F , and derive the relation which expresses χ in terms of G(r).

Explain how a renormalization group (RG) transformation may be defined in
terms of a blocking kernel which, after p iterations, yields a blocked partition function
Z(up, Cp, Np). Why does Z(up, Cp, Np) predict the same large-scale properties of the
system as does Z(u, C,N)?

Derive the RG equation for the free energy F (up, Cp) and explain how it may be
expressed in terms of a singular part f(u) which obeys the RG equation

f(u0) = b−pDf(up) +
p−1∑
j=0

b−jDg(uj) , (∗)

where the rôle of the function g(u) should be explained.

Explain the ideas of a fixed point, a critical surface, relevant and irrelevant
operators, and a repulsive trajectory in the context of the RG equations. Sketch some
typical RG flows near to a critical surface.

Show how the critical exponents characterizing a continuous phase transition may
be derived, and explain under what conditions the second term (the inhomogeneous term)
on the right-hand-side of (∗) may be safely neglected.

In the case that there are two relevant couplings t = (T − TC)/TC and h, derive
the scaling hypothesis for the free energy F±(r, h, C0):

F± = |t|D/λt

(
f±

(
h

|t|λh/λt

)
+ I±

)
,

What is the significance of the subscript label ± on these functions?

Briefly explain why the amplitude ratio F+(t, h = 0)/F−(t, h = 0) is expected to
be universal.

The following critical exponents are defined:

ξ ∼ |t|−ν h = 0
CV ∼ |t|−α h = 0 (the specific heat)

M ∼ |t|β h = 0, T < TC
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Under suitable assumptions derive the relation

α = 2−Dν .

where D is the dimension of space.

The Gaussian model in D dimensions (D ≤ 4) for a real scalar field is defined by
the Hamiltonian

H = 1
2

(
κ−1(∇φ(x))2 +m2φ2(x)

)
+ hφ(x) ,

where κ,m and h are coupling constants.

Derive an expression for the correlation length ξ in terms of the coupling constants.

By defining a suitable thinning transformation show that the critical exponents α
and β are given by

α = (4−D)/2 , β = (D − 2)/4 .

3 The partition function of the XY model can be written

Z =
∫ ∏

x′

dθ(x′) exp

[
−β
∑
x,µ

(
1− cos [θ(x + µ̂)− θ(x)]

)]
.

(a) Use the fact that, for large β

exp(−β(1− cosψ)) ' 1√
2πβ

∞∑
n=−∞

einψ e−n
2/2β

to write down the partition function for the Villain model.

(b) Take this model as valid for all β and perform a duality transformation which
separates the partition function into independent contributions from spin waves and
vortices. You will use Poisson’s summation formula

∞∑
n=−∞

g(n) =
∞∑

m=−∞

∫ ∞
−∞

dφ g(φ) e2πimφ .

(c) Describe the interactions between vortices.

(d) Derive a constraint on the net vorticity.
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4 A scalar field theory in D = 4 − ε dimensions near a critical point is described by
the Hamiltonian density

H(φ) =
1
2
|∇φ(x)|2 +

1
2
m2(Λ, T )φ2(x) +

1
4!
g(Λ, T )φ4(x)

where T is the temperature and Λ is the ultraviolet cutoff.

(a) By requiring that the properties of the theory be independent of the choice of Λ,
show that the dimensionless couplings (u2, λ) = (m2Λ−2, gΛ−ε) obey the renormalization
group flow equations, correct to lowest order in ε, of the form

du2

db
= 2u2 +

ΩD
2(2π)D

λ

1 + u2

and
dλ

db
= ελ − 3

2
ΩD

(2π)D
λ2

(1 + u2)2

where ΩD is the area of a unit sphere in D dimensions and b = log(Λ0/Λ), with Λ0 the
initial cutoff.

(b) Treating ε as a small positive parameter, show that these equations have an infrared
attractive fixed point at

u2
∗ = − ε

6
λ∗ =

16π2ε

3
.

(c) Explain why a fixed point of this nature at λ∗ 6= 0 means that the Landau-Ginsberg
approach is invalid.

[You may quote the Feynman rules of perturbation theory without derivation.]
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