

MATHEMATICAL TRIPOS Part III

Thursday 5 June 2008 9.00 to 12.00

PAPER 50

STATISTICAL FIELD THEORY AND APPLICATIONS

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS Cover sheet

Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 2

1 Explain briefly what is meant by a phase diagram. Give an example of a threedimensional phase diagram which contains a tricritical point and describe the nature of the phase transitions which can occur.

Give an account of the Landau-Ginsberg (LG) theory of phase transitions illustrated using scalar field theory and including a discussion of the following topics:

- (a) The idea of an order parameter;
- (b) The definition of the *correlation length* ξ and its rôle in LG theory;
- (c) The distinction between first-order and continuous phase transitions and how their occurrence is predicted in LG theory;
- (d) The concept of universality and which properties are, and are not, universal at a critical point;
- (e) The idea of *critical exponents* and how they may be derived;
- (f) The features of a tricritical point and how it occurs in LG theory.

You should clarify your account with diagrams which should be appropriately labelled.

The critical indices β, γ, δ in the Ising model are defined by

 $M \sim (-t)^{\beta} \quad (t < 0, h = 0), \quad \chi \sim t^{-\gamma} \quad (t > 0, h = 0) , \quad M \sim h^{1/\delta} \quad (t = 0, h > 0),$

where M is the magnetization, χ is the susceptibility, $t = (T - T_C)/T_C$ and h is the applied magnetic field. Calculate β, γ, δ for both an ordinary critical point and a tricritical point in LG theory.

Explain how the Ginsberg criterion shows that LG theory fails to predict the correct critical exponents for a general critical point if the dimension D satisfies $D \leq D_c$. Derive the expression for D_c in the general case and show that

 $D_c = 4$ for an ordinary critical point, $D_c = 3$ for a tricritical point.

Paper 50

3

2 The Ising model in D dimensions is defined on a cubic lattice of spacing a with N sites and with spin σ_r on the *r*-th site. The Hamiltonian is defined in terms of a set of operators $O_i(\{\sigma\})$ by

$$\mathcal{H}(\mathbf{u},\sigma) = \sum_{i} u_i O_i(\{\sigma\}) ,$$

where the u_i are coupling constants with $\mathbf{u} = (u_1, u_2, ...)$ and $\sigma_r \in \{1, -1\}$. In particular, \mathcal{H} contains the term $-h \sum_r \sigma_r$ where h is the magnetic field. The partition function is given by

$$\mathcal{Z}(\mathbf{u}, C, N) = \sum_{\sigma} \exp(-\beta \mathcal{H}(\mathbf{u}, \sigma) - \beta NC) .$$

Define the two-point correlation function $G(\mathbf{r})$ for the theory and state how the correlation length ξ parametrizes its behaviour for $r \gg \xi$.

State how the magnetization M and the magnetic susceptibility χ can be determined from the free energy F, and derive the relation which expresses χ in terms of $G(\mathbf{r})$.

Explain how a renormalization group (RG) transformation may be defined in terms of a blocking kernel which, after p iterations, yields a blocked partition function $\mathcal{Z}(\mathbf{u}_p, C_p, N_p)$. Why does $\mathcal{Z}(\mathbf{u}_p, C_p, N_p)$ predict the same large-scale properties of the system as does $\mathcal{Z}(\mathbf{u}, C, N)$?

Derive the RG equation for the free energy $F(\mathbf{u}_p, C_p)$ and explain how it may be expressed in terms of a singular part $f(\mathbf{u})$ which obeys the RG equation

$$f(\mathbf{u}_0) = b^{-pD} f(\mathbf{u}_p) + \sum_{j=0}^{p-1} b^{-jD} g(\mathbf{u}_j) , \qquad (*)$$

where the rôle of the function $g(\mathbf{u})$ should be explained.

Explain the ideas of a fixed point, a critical surface, relevant and irrelevant operators, and a repulsive trajectory in the context of the RG equations. Sketch some typical RG flows near to a critical surface.

Show how the critical exponents characterizing a continuous phase transition may be derived, and explain under what conditions the second term (the inhomogeneous term) on the right-hand-side of (*) may be safely neglected.

In the case that there are two relevant couplings $t = (T - T_C)/T_C$ and h, derive the scaling hypothesis for the free energy $F_{\pm}(r, h, C_0)$:

$$F_{\pm} = |t|^{D/\lambda_t} \left(f_{\pm} \left(\frac{h}{|t|^{\lambda_h/\lambda_t}} \right) + I_{\pm} \right) ,$$

What is the significance of the subscript label \pm on these functions?

Briefly explain why the amplitude ratio $F_+(t,h=0)/F_-(t,h=0)$ is expected to be universal.

The following critical exponents are defined:

$$\begin{split} \xi &\sim |t|^{-\nu} \quad h = 0 \\ C_V &\sim |t|^{-\alpha} \quad h = 0 \quad \text{(the specific heat)} \\ M &\sim |t|^\beta \quad h = 0, \ T < T_C \end{split}$$

Paper 50

[TURN OVER

4

Under suitable assumptions derive the relation

$$\alpha = 2 - D\nu .$$

where D is the dimension of space.

The Gaussian model in D dimensions $(D \leq 4)$ for a real scalar field is defined by the Hamiltonian

$$\mathcal{H} = \frac{1}{2} \left(\kappa^{-1} (\nabla \phi(\mathbf{x}))^2 + m^2 \phi^2(\mathbf{x}) \right) + h \phi(\mathbf{x}) ,$$

where κ, m and h are coupling constants.

Derive an expression for the correlation length ξ in terms of the coupling constants.

By defining a suitable thinning transformation show that the critical exponents α and β are given by

$$\alpha = (4 - D)/2$$
, $\beta = (D - 2)/4$.

3 The partition function of the XY model can be written

-

$$Z = \int \prod_{\mathbf{x}'} d\theta(\mathbf{x}') \exp\left[-\beta \sum_{\mathbf{x},\mu} \left(1 - \cos\left[\theta(\mathbf{x} + \hat{\mu}) - \theta(\mathbf{x})\right]\right)\right] \,.$$

(a) Use the fact that, for large β

$$\exp(-\beta(1-\cos\psi)) \simeq \frac{1}{\sqrt{2\pi\beta}} \sum_{n=-\infty}^{\infty} e^{in\psi} e^{-n^2/2\beta}$$

to write down the partition function for the Villain model.

(b) Take this model as valid for all β and perform a duality transformation which separates the partition function into independent contributions from spin waves and vortices. You will use Poisson's summation formula

$$\sum_{n=-\infty}^{\infty} g(n) \; = \; \sum_{m=-\infty}^{\infty} \int_{-\infty}^{\infty} d\phi \, g(\phi) \, e^{2\pi i m \phi} \, .$$

- (c) Describe the interactions between vortices.
- (d) Derive a constraint on the net vorticity.

4 A scalar field theory in $D = 4 - \epsilon$ dimensions near a critical point is described by the Hamiltonian density

$$\mathcal{H}(\phi) = \frac{1}{2} |\nabla \phi(\mathbf{x})|^2 + \frac{1}{2} m^2(\Lambda, T) \phi^2(\mathbf{x}) + \frac{1}{4!} g(\Lambda, T) \phi^4(\mathbf{x})$$

where T is the temperature and Λ is the ultraviolet cutoff.

(a) By requiring that the properties of the theory be independent of the choice of Λ , show that the dimensionless couplings $(u^2, \lambda) = (m^2 \Lambda^{-2}, g \Lambda^{-\epsilon})$ obey the renormalization group flow equations, correct to lowest order in ϵ , of the form

$$\frac{du^2}{db} \; = \; 2u^2 \; + \; \frac{\Omega_D}{2(2\pi)^D} \frac{\lambda}{1+u^2}$$

and

$$\frac{d\lambda}{db} = \epsilon \lambda - \frac{3}{2} \frac{\Omega_D}{(2\pi)^D} \frac{\lambda^2}{(1+u^2)^2}$$

where Ω_D is the area of a unit sphere in D dimensions and $b = \log(\Lambda_0/\Lambda)$, with Λ_0 the initial cutoff.

(b) Treating ϵ as a small positive parameter, show that these equations have an infrared attractive fixed point at

$$u_*^2 = -\frac{\epsilon}{6} \qquad \lambda_* = \frac{16\pi^2\epsilon}{3}.$$

(c) Explain why a fixed point of this nature at $\lambda_* \neq 0$ means that the Landau-Ginsberg approach is invalid.

[You may quote the Feynman rules of perturbation theory without derivation.]

END OF PAPER