

MATHEMATICAL TRIPOS Part III

Tuesday 13 June, 2006 9 to 11

PAPER 56

SOLITONS AND INSTANTONS

Attempt **THREE** questions.

There are **FOUR** questions in total.

The questions carry equal weight.

 $STATIONERY\ REQUIREMENTS$

Cover sheet Treasury Tag Script paper $SPECIAL\ REQUIREMENTS$

None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 Find the field equation and the conserved energy for the scalar field theory with the Lagrangian density

$$\mathcal{L} = \frac{1}{2}(\partial_t \phi)^2 - \frac{1}{2}(\partial_x \phi)^2 - (1 - \cos \phi).$$

Find the static kink solution interpolating between two vacua

$$\phi(-\infty) = 0, \qquad \phi(\infty) = 2\pi.$$

How many other kink solutions are there?

Let ϕ_0 be a solution to the field equation, and let ϕ_1 satisfy

$$\partial_{\rho}(\phi_1 - \phi_0) = 2b \sin\left(\frac{\phi_1 + \phi_0}{2}\right), \ \partial_{\tau}(\phi_1 + \phi_0) = 2b^{-1} \sin\left(\frac{\phi_1 - \phi_0}{2}\right),$$

where $\tau = (x+t), \rho = (x-t)$ and b is a constant. Show that ϕ_1 is also a solution to the field equation.

2 Let $v = v(x, y) \in \mathbb{R}^n$ be a vector which satisfies a system of equations

$$D_x v := \partial_x v + A_x v = 0, \qquad D_y v := \partial_y v + A_y v = 0, \tag{1}$$

where A_x , A_y are $\mathbf{gl}(n,\mathbb{R})$ valued functions on \mathbb{R}^2 .

Show that (1) is consistent iff the nonlinear equation

$$\partial_x A_y - \partial_y A_x + [A_x, A_y] = 0 \tag{2}$$

holds. Give the geometric interpretation of (2), and find its most general solution.

Let $(A_i, \Phi) : \mathbb{R}^3 \to \mathbf{gl}(n, \mathbb{R})$ be the Yang-Mills potential and the Higgs field. By considering a symmetry reduction of ASDYM or otherwise, demonstrate that the Bogomolny equations

$$\frac{1}{2}\varepsilon_{ijk}F_{jk} = D_i\Phi$$

admit a Lax representation analogous to (2) but containing a parameter. Here $D_i\Phi = \partial_i\Phi + [A_i, \Phi]$ and $F_{ij} = \partial_iA_j - \partial_jA_i + [A_i, A_j]$.

3 Write an essay on Yang–Mills instantons on \mathbb{R}^4 .

4 Write down a twistor equation relating points $(\omega^A, \pi_{A'})$ in twistor space \mathcal{PT} to points $x^{AA'}$ in the complexified Minkowski space M_C .

Let $F(\omega^A, \pi_{A'})$ be a patching matrix for a holomorphic vector bundle $\mu : E \to \mathcal{PT}$ with respect to the covering

$$U = \{(\omega^A, \pi_{A'}), \pi_{1'} \neq 0\}, \qquad \tilde{U} = \{(\omega^A, \pi_{A'}), \pi_{0'} \neq 0\}.$$

Assume that E is trivial on twistor lines, and show that on these lines

$$F = \widetilde{H}H^{-1}$$
.

where H and \tilde{H} are holomorphic in $\pi_{A'}$ in U and \tilde{U} respectively.

Deduce the existence of a one–form $\Phi_{AA'}$ on M_C such that

$$\pi^{A'}\Phi_{AA'} = H^{-1}\pi^{A'}\frac{\partial}{\partial x^{AA'}}H,$$

and show that this one-form satisfies the ASDYM equations.

END OF PAPER