MATHEMATICAL TRIPOS Part III

Thursday 7 June 2007 9.00 to 12.00

PAPER 34

QUANTUM INFORMATION THEORY

Attempt **FOUR** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 1

(a) Prove that the von Neumann entropy is subadditive, i.e.

$$S(\rho_{AB}) \leqslant S(\rho_A) + S(\rho_B), \qquad (1)$$

where ρ_{AB} is the density matrix of a bipartite system AB and ρ_A , ρ_B are the reduced density matrices of the two subsystems A and B respectively.

(b) Using the bound (1) or otherwise, prove the concavity of the von Neumann entropy

 $\mathbf{2}$

$$S\left(\sum_{i=1}^{r} p_i \rho_i\right) \geq \sum_{i=1}^{r} p_i S(\rho_i),$$

where $p_i \ge 0$, $\sum_{i=1}^r p_i = 1$ and ρ_i , (i = 1, ..., r) are density matrices.

(c) Consider a quantum system A which is in a state ρ_i with probability p_i , and let σ be some other density matrix acting on the Hilbert Space \mathcal{H}_A of the system A. Prove that

$$\sum_{i} p_{i} S(\rho_{i} || \sigma) = \sum_{i} p_{i} S(\rho_{i} || \bar{\rho}) + S(\bar{\rho} || \sigma).$$

$$(2)$$

In the above, $\bar{\rho} := \sum_{i} p_i \rho_i$ and the notation $S(\omega || \sigma)$ denotes the relative entropy of the states ω and σ .

2 Consider a quantum information source defined by a sequence of density matrices $\rho^{(n)}$ acting on Hilbert spaces $\mathcal{H}^{\otimes n}$, and given by

$$\rho^{(n)} = \sum_{k} p_{k}^{(n)} |\Psi_{k}^{(n)}\rangle \langle \Psi_{k}^{(n)}|, \qquad (3)$$

with $p_k^{(n)} \ge 0$ and $\sum_k p_k^{(n)} = 1$. Here \mathcal{H} denotes the Hilbert space of a single qubit. Note that the state vectors $|\Psi_k^{(n)}\rangle$ need not be mutually orthogonal.

(a) State a compression–decompression scheme $\mathcal{C}^{(n)}$ - $\mathcal{D}^{(n)}$ for such a source and define the corresponding rate of compression. Define the ensemble average fidelity F_n and state a condition under which the compression-decompression scheme is considered to be reliable.

If the density matrix $\rho^{(n)}$ given by (3) satisfies the relation

$$\rho^{(n)} = \pi^{\otimes n}, \tag{4}$$

where π is a density matrix acting in the Hilbert Space \mathcal{H} , then the quantum information source is said to be memoryless.

- (b) Express the eigenvalues, eigenstates and von Neumann entropy of $\rho^{(n)}$ in terms of the corresponding quantities of the density matrix π .
- (c) For any given $\epsilon > 0$, define the ϵ -typical subspace $\mathcal{T}_{\epsilon}^{(n)}$ of $\rho^{(n)}$ and state the Typical Subspace Theorem.
- (d) Define a compression–decompression scheme for such a source, for which the ensemble average fidelity F_n satisfies the bound

$$F_n \ge 2\sum_k p_k^{(n)} \alpha_k^2 - 1, \qquad (5)$$

where $\alpha_k := ||P_{\epsilon}^{(n)}|\Psi_k^{(n)}\rangle||$, with $P_{\epsilon}^{(n)}$ being the orthogonal projection onto $\mathcal{T}_{\epsilon}^{(n)}$.

(e) Using the above bound (5) and the Typical Subspace Theorem, prove that if $R > S(\pi)$ then there exists a reliable compression scheme of rate R, for the memoryless source given by (4). Here $S(\pi)$ denotes the von Neumann entropy of the state π .

3 The action of the depolarizing channel on the state ρ of a qubit is given by

$$\Phi(\rho) = (1-p)\rho + \frac{p}{3}(\sigma_x \rho_x \sigma_x + \sigma_y \rho \sigma_y + \sigma_z \rho \sigma_z),$$
(6)

where $0 and <math>\sigma_x$, σ_y and σ_z are the Pauli matrices.

(a) Prove that the depolarizing channel can alternatively be expressed as follows, for some 0 < q < 1:

$$\Phi(\rho) = (1-q)\rho + q\frac{\mathbf{l}}{2}, \qquad (7)$$

where \mathbf{I} is the identity operator acting on the single qubit Hilbert space. Hence find the relation between p and q.

- (b) Derive the effect of the depolarizing channel on the Bloch sphere, hence justifying its name.
- (c) Write an expression for the Holevo χ quantity for an ensemble of quantum states $\mathcal{E} := \{p_i, \rho_i\}$. Express $\chi(\mathcal{E})$ in terms of the relative entropy and prove that it can never increase under a quantum operation.
- (d) State the Holevo–Schumacher–Westmoreland (HSW) Theorem and use it to derive the product state capacity of a qubit depolarizing channel with parameter q, defined by (7).

- $\mathbf{4}$
- (a) Let \mathcal{H}_A , \mathcal{H}_B be two Hilbert Spaces, each of dimension d. Write an expression for a maximally entangled state $|\Psi_{AB}\rangle$, of size d, in the Hilbert Space $\mathcal{H}_A \otimes \mathcal{H}_B$ and explain why it is said to be *maximally* entangled.
- (b) Prove that any arbitrary vector $|\phi_A\rangle \in \mathcal{H}_A$ can be expressed in terms of the maximally entangled state $|\Psi_{AB}\rangle$, as follows:

$$|\phi_A\rangle = \langle \phi_B^* | \tilde{\Psi}_{AB} \rangle, \qquad (8)$$

via the relative state method. Here $|\tilde{\Psi}_{AB}\rangle := \sqrt{d} |\Psi_{AB}\rangle$, and $|\phi_B^*\rangle$ is the *index state* in \mathcal{H}_B that yields $|\phi_A\rangle$.

- (c) Prove that the pure state resulting from the action of any arbitrary operator M_A on a state vector $|\phi_A\rangle \in \mathcal{H}_A$ can be obtained as a relative state from the state $(M_A \otimes I_B)|\tilde{\Psi}_{AB}\rangle$.
- (d) It can be shown that if $\Phi_A : \mathcal{B}(\mathcal{H}_A) \mapsto \mathcal{B}(\mathcal{H}_A)$ is a linear, completely positive trace-preserving (CPT) map, then

$$\Phi_A(|\phi_A\rangle\langle\phi_A|) = \langle\phi_B^*|(\Phi_A\otimes id_B)(|\tilde{\Psi}_{AB}\rangle\langle\tilde{\Psi}_{AB}|)|\phi_B^*\rangle.$$
(9)

Using this result, prove that any linear CPT map, Φ_A , can be written in the Kraus form, i.e.,

$$\Phi_A(\rho) = \sum_k A_k \rho A_k^{\dagger} \,,$$

for any $\rho \in \mathcal{B}(\mathcal{H}_A)$, where the A_k are linear operators in $\mathcal{B}(\mathcal{H}_A)$, satisfying

$$\sum_{k} A_k^{\dagger} A_k = \mathbf{I}_A \,,$$

with \mathbf{I}_A being the identity operator in $\mathcal{B}(\mathcal{H}_A)$.

- (a) State the generalized measurement postulate and state the condition under which it reduces to a projective measurement.
- (b) Suppose a projective measurement described by a set of projection operators $\{P_i\}$ is performed on a quantum system, but we never learn the result of the measurement. If the state of the system before the measurement was ρ then the state after the measurement is given by

$$\rho' = \sum_{i} P_i \rho P_i \,.$$

Prove that the entropy of this final state is at least as great as the original entropy:

$$S(\rho') \ge S(\rho) \,,$$

with equality if and only if $\rho = \rho'$.

(c) Consider a qubit which is in the state ρ with Bloch vector $\vec{s} = (1/3, 1/2, 1/5)$. What is the probability that a projective measurement of the spin of the qubit along the Z-axis will yield a value +1?

END OF PAPER

 $\mathbf{5}$