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1 The free Klein-Gordon field φ(x, t) obeys the equation

∂µ∂
µφ+m2φ = 0 .

Using Noether’s theorem, find the expression for the conserved 3-momentum P.

In the quantized Klein-Gordon theory, the field φ(x) and the conjugate field π(x)
(in the Schrödinger representation) have the coupled expansions

φ(x) =
∫

d3p

(2π)3
1√
2Ep

(apeip·x + a
†
p e

−ip·x)

π(x) =
∫

d3p

(2π)3
(−i)

√
Ep

2
(apeip·x − a

†
p e

−ip·x)

where Ep =
√

p · p +m2 and ap and a†p satisfy

[ap, ap′ ] = [a†p , a†p′ ] = 0

[ap, a
†
p′ ] = (2π)3δ(3)(p− p′) .

Show that the 3-momentum operator P in the quantized theory can be expressed as

P =
∫

d3p

(2π)3
p a†p ap .

Calculate [P, a†q] and hence determine

e−iP·ya
†
q e

iP·y

where y is a constant vector. What can you deduce about e−iP·y|q〉, where |q〉 denotes
the one-particle state of 3-momentum q?

Find e−iP·yφ(x)eiP·y, and interpret your result.

Paper 49



3

2 In the chiral representation, the Dirac matrices are given by

γ0 =
(

0 12

12 0

)
, γi =

(
0 σi

−σi 0

)
where the Pauli matrices are

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

The matrix γ5 is defined by
γ5 = iγ0γ1γ2γ3 .

Calculate γ5 and show that it anticommutes with γ0 and γi.

Consider the massless Dirac equation

iγµ∂µψ = 0

for a left-handed spinor field, satisfying γ5ψ = −ψ. A plane wave solution is of the form

ψ(x) = λ(p)e−ip·x .

What condition does the 4-momentum pµ have to satisfy for such a solution to exist? Find
and solve the equation for λ(p), assuming the condition is satisfied.

Find the effect on this solution of a spatial rotation around the axis parallel to the
3-momentum p. What can you deduce about the spin states of particles in the quantized
theory of a left-handed Dirac field?
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3 The interaction picture field φ(x) of a quantized scalar field theory satisfies the
relation

Tφ(x)φ(y) = : φ(x)φ(y) : + DF (x− y) .

Explain the meaning of the various expressions occurring here, and establish this relation.

Explain in outline how you would derive the Feynman rules for correlation functions

〈0|T(φ(x1)φ(x2) . . . φ(xn)S )|0〉 ,

where S is the S-matrix, in the theory whose Lagrangian density is

L =
1
2
∂µφ∂

µφ− 1
2
m2φ2 +

µ

3!
φ3 − λ

4!
φ4 .

For what range of parameter values do you expect this theory to have a stable
vacuum?

[
φ(x) has the expansion φ(x) =

∫
d3p

(2π)3
1√
2Ep

(ape−ip·x + a
†
pe

ip·x) .

]

4 Write notes on:

(a) Gauge invariance of a classical electromagnetic field coupled to matter fields.

(b) The effect of position-independent gauge transformations, ψ(x) → eieχψ(x),
on the Feynman rules for QED scattering amplitudes, and the relationship with
charge conservation.

(c) Gauge invariance and the photon propagator.

(d) The Landau gauge ∂µA
µ = 0, and the photon propagator in Landau gauge

− i

k2

(
gµν −

kµkν

k2

)
.
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