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NON-NEWTONIAN FLUID MECHANICS

Attempt any TWO questions. The questions carry equal weight.

The following definitions may be quoted:

∇
J ≡ DJ

Dt
− J ·∇v −∇vT ·J ,

◦
J ≡

∇
J +J ·E + E·J ,

4
J ≡

◦
J +J ·E + E·J .

You may not start to read the questions

printed on the subsequent pages until

instructed to do so by the Invigilator.
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1 The deviatoric stress in a linear viscoelastic fluid has the form

σ′(x, t) = 2
∫ ∞

0

G(s)E(x, t− s)ds .

Explain briefly the circumstances in which this equation is expected to approximate the
behaviour of a viscoelastic fluid (formal justification is not required). Explain also why
G(s) is called the relaxation modulus of the fluid.

Define the complex viscosity µ̂(ω) of such a fluid and explain the physical significance of
its real and imaginary parts. Find µ̂(ω) for a Maxwell fluid such that

G(s) = G0e
−s/τ .

A Maxwell fluid of density ρ occupies a channel between the fixed planes y = ±h. An
oscillatory pressure gradient ∆peiωt is applied to the fluid in the x-direction. Assuming
that the flow is unidirectional, determine the volume flux per unit length in the z-direction,
Qeiωt as

Q = −2∆ph
iωρ

[
1− tanh z

z

]
, where

z =
[
iωρh2(1 + iωτ)/G0τ

] 1
2 .

Obtain the limiting forms of Q as ω → 0 and ω →∞ and comment on your results.

Suppose finally that ωτ � 1 but h is sufficiently small that ρ(ωh)2/G0 � 1. Find Q in
this limit and comment.

2 A rigid sphere rotates slowly and steadily in an unbounded fluid. Sketch the
secondary flow streamlines that you would expect as a result of weak non-Newtonian
effects. Briefly describe two other non-Newtonian flow phenomena that result from the
same mechanism.

Explain briefly (detailed derivations are not required) why the constitutive equation for a
weakly non-Newtonian fluid is given by the second-order-fluid result

σ = −pI + 2µE + 4(ψ1 + ψ2)E2 − ψ1

4
E .

In what circumstances would you use this equation? Calculate the stress for a steady
simple shear flow.

It may be shown that for any Stokes flow vN (x),

∇∧(∇.
◦
EN ) = 0 .

Deduce that, for an inertialess flow of a second-order-fluid having ψ1 + 2ψ2 = 0, if the
velocity v is prescribed on the bounding surface, then v(x) ≡ vN (x) throughout the
fluid.

Deduce the same result for any planar flow of an arbitrary second-order-fluid.

Paper 49



3

3 A PTT fluid, used to model the flow of polymer melts, has the constitutive equation

∇
A +

1
τ

(1 + αtrA)A = 2E

σ = −pI +G0A

where τ, α and G0 are constants, and trA ≡ a11 + a22 + a33.

(a) Simplify the equation in the linear viscoelastic limit and determine the relaxation
modulus G(s).

(b) Show that in a steady simple shear flow v = γ̇(y, 0, 0),

γ̇τ = (1 + 2αa2
12)a12 .

Use this result to determine the flow profile w(r) for flow in a circular cylinder of
radius R under an axial pressure gradient ∆p.

[The axial equation of motion in cylindrical co-ordinates is

1
r

d

dr
(rσrz) =

dp

dz
.

]

(c) Consider finally a steady uniaxial extensional flow with principal strain rate γ̇ > 0
in the x-direction. Show that in such a flow T = αtrA− 2γ̇τ + 1 satisfies

T (T + 2γ̇τ − 1)(T + 3γ̇τ) = 6α(γ̇τ)2 ,

and deduce the extensional viscosity of the fluid in the limits γ̇τ → 0 and γ̇τ →∞.
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