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MODULAR FORMS

Attempt FOUR questions.

There are SIX questions in total.

The questions carry equal weight.

For any σ =
(

a b
c d

)
∈ SL2(Z) we write f |[σ]k(τ) = (cτ + d)−kf(σ(τ)).
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1

(a) Show that mapping τ ∈ H to the lattice Λτ := Zτ + Z induces a bijection between
SL2(Z)\H and the set of lattices in C up to homothety.

(b) Prove that the modular invariant j : H → C induces a bijection SL2(Z)\H → C.

[You may assume the formula ord∞(f)+ 1
2ordi(f)+ 1

3ordρ(f)+
∑

τ 6=i,ρ ordτ (f) = k
6

for non-zero f ∈ M2k(SL2(Z)).]

(c) Let Λ,Λ′ ⊂ C be lattices satisfying G4(Λ) = G4(Λ′) and G6(Λ) = G6(Λ′). Prove
that Λ = Λ′.

2 (a) Define the topology and complex structure of X(1) = SL2(Z)\H∗ and prove that
X(1) is compact.

(b) Prove using facts about compact Riemann surfaces that the space M2k(SL2(Z)) is
finite dimensional.

3 Let E2(τ) = 1− 24
∑∞

n=1 σ1(n)qn for q = e2πiτ .

(a) Using the relation E2(−1/τ) = τ2E2(τ) + 6τ
πi prove that

F (τ) = q
∞∏

n=1

(1− qn)24

lies in S12(SL2(Z)).

(b) Let Θ = q d
dq = 1

2πi
d
dτ . Show that, for every f ∈ Mk(SL2(Z)),

g = (Θ− k

12
E2)f ∈ Mk+2(SL2(Z))

and that f ∈ Sk(SL2(Z)) if and only if g ∈ Sk+2(SL2(Z)).

(c) Show that the coefficients τ(n) of F (τ) = q
∏∞

n=1(1− qn)24 =
∑∞

n=1 τ(n)qn satisfy

(1− n)τ(n) = 24
n−1∑
`=1

σ1(`)τ(n− `)

and
τ(n) ≡ nσ5(n) (mod 5).

[You may use without proof that dimM8(SL2(Z)) = dimS12(SL2(Z)) = 1 and
dimS14(SL2(Z))) = 0.]
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4 (a) Define the Hecke operators T2k(n) acting on M2k(SL2(Z)) and determine their
action on Fourier expansions.

(b) Let f(τ) =
∑∞

m=0 c(m)qm ∈ M2k(SL2(Z)). If T2k(n)f = λ(n)f for all n > 1, show
that for all m,n > 1

c(n) = c(1)λ(n)

c(0) 6= 0 ⇒ λ(n) = σ2k−1(n)

λ(m)λ(n) =
∑

a|gcd(m,n)

a2k−1λ(
mn

a2
).

(c) If f ∈ S2k(SL2(Z)) satisfies T2k(n)f = λ(n)f for all n > 1, deduce from (b) that
L(f, s) admits an appropriate Euler product.

5 (a) Let Γ ⊂ SL2(Z) be a congruence subgroup. Let

µ =
{

[SL2(Z) : Γ]/2 if −I /∈ Γ
[SL2(Z) : Γ] if −I ∈ Γ.

Let ν2 and ν3 denote the number of elliptic points of period 2 and 3 in X(Γ) = Γ\H∗ and
ν∞ the number of cusps of X(Γ). Prove that the genus of X(Γ) is

g = 1 +
µ

12
− ν2

4
− ν3

3
− ν∞

2
.

(b) Compute all terms in the formulae of (a) for

Γ = Γ(N) =
{(

a b
c d

)
≡

(
1 0
0 1

)
(mod N)

}
.

For what values of N is the genus of X(Γ(N)) equal to zero?
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6 (a) Define the space Sk(Γ) of cusp forms of weight k with respect to a congruence
subgroup Γ ⊂ SL2(Z).

(b) For f : H → C let φ(τ) = |f(τ)|(Im(τ))
k
2 . Show that for σ ∈ SL2(Z)

φ(σ(τ)) = |f |[σ]k(τ)|(Im(τ))
k
2 .

(c) Prove that a function f : H → C is an element of Sk(Γ) if and only if the following
three conditions hold:

i. f is meromorphic on H,

ii. f |[γ]k = f for all γ ∈ Γ,

iii. f(τ)(Im(τ))k/2 is bounded on H.

END OF PAPER
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