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1 Let E be a Banach space, F a normed space and let T be a bounded linear mapping
from E to F . Suppose that there exist constants R > 0 and 0 < k < 1 such that, for every
y ∈ F with ‖y‖ 6 1, there is some x ∈ E with ‖x‖ 6 R such that ‖Tx − y‖ 6 k. Prove
that (i) for every y ∈ F there is some x ∈ E with Tx = y and ‖x‖ 6

(
R

1−k

)
‖y‖ and (ii) F

is complete.

State, without proof , the Open Mapping Theorem, for a continuous linear map
between two Banach spaces. Deduce the Closed Graph Theorem.

Let X be a compact Hausdorff space and let C(X) be the Banach space of all
continuous, real-valued functions on X, equipped with the uniform norm ‖ . ‖∞. [You
should assume, without proof , that

(
C(X); ‖ . ‖∞

)
is a Banach space.] For each x ∈ X,

let the mapping εx : C(X) → R be defined by εx(f) = f(x) (f ∈ C(X)). Now let ‖ . ‖
be some Banach-space norm on C(X) such that, for every x ∈ X, the mapping εx is
‖ . ‖-continuous. Prove that ‖ . ‖ is equivalent to ‖ . ‖∞.

2 Let E be a real vector space and let K be a convex subset of E. Define what it
means to say that a point x ∈ K is an extreme point of K.

Now let E be a real, Hausdorff, locally convex topological vector space and let K be
a compact, convex subset of E. Prove that K is the closed convex hull of its set of extreme
points. [You may assume, without proof, any version of the Hahn-Banach theorem, and
of the separation theorem for convex sets.]

Let `∞ be the space of all bounded real sequences x = (xn)n>1 with the norm

‖x‖∞ = sup{|xn| : n > 1} ,

and let c0 be the closed subspace of `∞ consisting of all sequences x = (xn) such that
xn → 0 as n → ∞. Identify the extreme points of the closed unit ball of `∞, and prove
that the closed unit ball of c0 has no extreme points.

3 Let A be a Banach algebra, with identity, over the complex field, and let x ∈ A.
Define the spectrum, Spx, of x in A. Prove that Spx is a non-empty, compact subset of
C. [You should assume, without proof, that : (i) the set G(A) of invertible elements of A
is open in A, and (ii) the mapping x 7→ x−1 (x ∈ G(A)) is continuous.]

Let E = O(C) be the algebra of all complex-valued, holomorphic (i.e. analytic)
functions on the complex plane. Show that E can be given an algebra-norm, but not a
complete algebra-norm.

Let D = C(C) be the algebra of all complex-valued, continuous functions on the
complex plane. Explain, briefly, how to find, in D, a function f and a sequence (gn) of
non-identically-zero functions, such that fgn = ngn, for all n > 1. Deduce that D can not
be given any algebra-norm.
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4 Let A be a complex, unital Banach algebra and let x ∈ A. Prove the spectral radius
formula,

r(x) = lim
n→∞

‖xn‖
1
n = inf

n>1
‖xn‖

1
n .

[Elementary properties of the spectrum may be quoted without proof .]

Prove, from this formula or otherwise, that r(xy) = r(yx) for all x, y ∈ A.

Give an example in which Sp(xy) 6= Sp(yx).

Prove also that, for every x ∈ A,

r(x) = inf{t > 0 :
(
t−1x

)n → 0 as n →∞} .

5 Let A be a commutative, unital Banach algebra over C and let x ∈ A. For every
open subset U of C, let O(U) be the algebra of all complex-valued holomorphic functions
on U , in its standard topology of ‘local uniform convergence’. Let Z ∈ O(U) be the
function Z(z) = z (z ∈ U). Prove that there is a continuous, unital homomorphism
Θx : O(U) → A such that Θx(Z) = x, if and only if Spx ⊂ U . Prove also that Θx is
unique.

[N.B. You should assume, without proof, any standard theorems from complex analysis
that you need, including any form of the Runge approximation theorem. Any such theorem
should be clearly stated .]

Prove that, for all f ∈ O(U) and every character ϕ on A,

ϕ
(
Θx(f)

)
= f

(
ϕ(x)

)
.

Deduce that Sp
(
Θx(f)

)
= {f(z) : z ∈ Spx}.

Let x ∈ A satisfy Sp x ⊂ Π+, where Π+ = {z ∈ C : <z > 0}. Prove that there is a
unique element y ∈ A such that both y2 = x and Sp y ⊂ Π+.
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6 Let A be a complex, unital Banach algebra, with an involution x 7→ x∗ satisfying
‖x∗x‖ = ‖x‖2 (x ∈ A) (i.e. A is a C∗-algebra); we say that x ∈ A is normal if and only if
x∗x = xx∗. Prove :

(i) if x is a normal element of A, then r(x) = ‖x‖ ;

(ii) if A is also commutative, then ϕ(x∗) = ϕ(x) for every x ∈ A and every character
ϕ on A.

Deduce that every commutative C∗-algebra is isometrically ∗-isomorphic to an
algebra C(K), of all continuous complex-valued functions on a suitable compact Hausdorff
space K.

[General results on commutative Banach algebras may be quoted without proof .]

If A is any (not necessarily commutative) C∗-algebra and if x is a normal element
of A such that Spx ⊂ R, prove that x = x∗. Is the assumption of normality necessary for
this result ?

END OF PAPER
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