

## MATHEMATICAL TRIPOS Part III

Friday 2 June, 2006 9 to 12

## PAPER 6

## INTRODUCTION TO BANACH SPACES AND ALGEBRAS

Attempt FOUR questions.

There are SIX questions in total.

The questions carry equal weight.

 $STATIONERY\ REQUIREMENTS$ 

Cover sheet Treasury Tag Script paper  $SPECIAL\ REQUIREMENTS$ 

None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.



Let E be a Banach space, F a normed space and let T be a bounded linear mapping from E to F. Suppose that there exist constants R>0 and 0< k<1 such that, for every  $y\in F$  with  $\|y\|\leqslant 1$ , there is some  $x\in E$  with  $\|x\|\leqslant R$  such that  $\|Tx-y\|\leqslant k$ . Prove that (i) for every  $y\in F$  there is some  $x\in E$  with Tx=y and  $\|x\|\leqslant \left(\frac{R}{1-k}\right)\|y\|$  and (ii) F is complete.

State, without proof, the Open Mapping Theorem, for a continuous linear map between two Banach spaces. Deduce the Closed Graph Theorem.

Let X be a compact Hausdorff space and let C(X) be the Banach space of all continuous, real-valued functions on X, equipped with the uniform norm  $\|.\|_{\infty}$ . [You should assume, without proof, that  $(C(X);\|.\|_{\infty})$  is a Banach space.] For each  $x \in X$ , let the mapping  $\epsilon_x : C(X) \to \mathbb{R}$  be defined by  $\epsilon_x(f) = f(x)$   $(f \in C(X))$ . Now let  $\|.\|$  be some Banach-space norm on C(X) such that, for every  $x \in X$ , the mapping  $\epsilon_x$  is  $\|.\|$ -continuous. Prove that  $\|.\|$  is equivalent to  $\|.\|_{\infty}$ .

**2** Let E be a real vector space and let K be a convex subset of E. Define what it means to say that a point  $x \in K$  is an *extreme point* of K.

Now let E be a real, Hausdorff, locally convex topological vector space and let K be a compact, convex subset of E. Prove that K is the closed convex hull of its set of extreme points. [You may assume, without proof, any version of the Hahn-Banach theorem, and of the separation theorem for convex sets.]

Let  $\ell^{\infty}$  be the space of all bounded real sequences  $x=(x_n)_{n\geq 1}$  with the norm

$$||x||_{\infty} = \sup\{|x_n| : n \geqslant 1\},\,$$

and let  $c_0$  be the closed subspace of  $\ell^{\infty}$  consisting of all sequences  $x = (x_n)$  such that  $x_n \to 0$  as  $n \to \infty$ . Identify the extreme points of the closed unit ball of  $\ell^{\infty}$ , and prove that the closed unit ball of  $c_0$  has no extreme points.

- 3 Let A be a Banach algebra, with identity, over the complex field, and let  $x \in A$ . Define the spectrum,  $\operatorname{Sp} x$ , of x in A. Prove that  $\operatorname{Sp} x$  is a non-empty, compact subset of  $\mathbb{C}$ . [You should assume, without proof, that: (i) the set G(A) of invertible elements of A is open in A, and (ii) the mapping  $x \mapsto x^{-1}$   $(x \in G(A))$  is continuous.]
- Let  $E = \mathcal{O}(\mathbb{C})$  be the algebra of all complex-valued, holomorphic (i.e. analytic) functions on the complex plane. Show that E can be given an algebra-norm, but not a complete algebra-norm.
- Let  $D = C(\mathbb{C})$  be the algebra of all complex-valued, continuous functions on the complex plane. Explain, briefly, how to find, in D, a function f and a sequence  $(g_n)$  of non-identically-zero functions, such that  $fg_n = ng_n$ , for all  $n \ge 1$ . Deduce that D can not be given any algebra-norm.



4 Let A be a complex, unital Banach algebra and let  $x \in A$ . Prove the spectral radius formula.

$$r(x) = \lim_{n \to \infty} ||x^n||^{\frac{1}{n}} = \inf_{n \ge 1} ||x^n||^{\frac{1}{n}}.$$

[Elementary properties of the spectrum may be quoted without proof.]

Prove, from this formula or otherwise, that r(xy) = r(yx) for all  $x, y \in A$ .

Give an example in which  $Sp(xy) \neq Sp(yx)$ .

Prove also that, for every  $x \in A$ ,

$$r(x) = \inf\{t > 0 : (t^{-1}x)^n \to 0 \text{ as } n \to \infty\}.$$

- Let A be a commutative, unital Banach algebra over  $\mathbb C$  and let  $x \in A$ . For every open subset U of  $\mathbb C$ , let  $\mathcal O(U)$  be the algebra of all complex-valued holomorphic functions on U, in its standard topology of 'local uniform convergence'. Let  $Z \in \mathcal O(U)$  be the function Z(z) = z ( $z \in U$ ). Prove that there is a continuous, unital homomorphism  $\Theta_x : \mathcal O(U) \to A$  such that  $\Theta_x(Z) = x$ , if and only if  $\operatorname{Sp} x \subset U$ . Prove also that  $\Theta_x$  is unique.
- [N.B. You should assume, without proof, any standard theorems from complex analysis that you need, including any form of the Runge approximation theorem. Any such theorem should be clearly stated.]

Prove that, for all  $f \in \mathcal{O}(U)$  and every character  $\varphi$  on A,

$$\varphi(\Theta_x(f)) = f(\varphi(x)).$$

Deduce that  $Sp(\Theta_x(f)) = \{f(z) : z \in Sp x\}.$ 

Let  $x \in A$  satisfy  $\operatorname{Sp} x \subset \Pi_+$ , where  $\Pi_+ = \{z \in \mathbb{C} : \Re z > 0\}$ . Prove that there is a unique element  $y \in A$  such that both  $y^2 = x$  and  $\operatorname{Sp} y \subset \Pi_+$ .



- **6** Let A be a complex, unital Banach algebra, with an involution  $x \mapsto x^*$  satisfying  $||x^*x|| = ||x||^2$  ( $x \in A$ ) (i.e. A is a  $C^*$ -algebra); we say that  $x \in A$  is normal if and only if  $x^*x = xx^*$ . Prove:
  - (i) if x is a normal element of A, then r(x) = ||x||;
- (ii) if A is also commutative, then  $\varphi(x^*)=\overline{\varphi(x)}$  for every  $x\in A$  and every character  $\varphi$  on A.

Deduce that every commutative  $C^*$ -algebra is isometrically \*-isomorphic to an algebra C(K), of all continuous complex-valued functions on a suitable compact Hausdorff space K.

[General results on commutative Banach algebras may be quoted without proof.]

If A is any (not necessarily commutative)  $C^*$ -algebra and if x is a normal element of A such that  $\operatorname{Sp} x \subset \mathbb{R}$ , prove that  $x = x^*$ . Is the assumption of normality necessary for this result?

## END OF PAPER