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1 Let k be a knot in S3. Obtain a presentation of the knot group π1(S3 − k). Apply
the same method to the 3-component link l (the Borromean rings) illustrated below:

Show that π1(S3 − l) is generated by x1, x2, x3 subject to the relations that x1

commutes with the commutator [x−1
2 , x3] and x2 with the commutator [x−1

3 , x1]. Explain
why the commutator quotient group is free-abelian of rank 3. By mapping x3 to(

i 1
2i 2− i

)
, or otherwise, show that there is a faithful representation of π1(S3 − l)

in PSL2(C) and deduce that S3 − l has a hyperbolic structure.

[You may assume that the discrete subgroup PSL2(Z[i]) of PSL2(C) has a

presentation T =
(

1 1
0 1

)
,

U =
(

1 i
0 1

)
, L =

(
−i 0
0 i

)
, A =

(
0 −1
1 0

)
subject to the relations TU = UT,L2 =

(TL)2 = (UL)2 = (AL)2 = A2 = (TA)3 = (UAL)3 = 12.]

2 Let M3 be a connected, compact, orientable 3-manifold without boundary. If
π1(M3) = Γ is infinite, torsion free and abelian, show that Γ ∼= Z or Z×Z×Z. Show further
that, if Γ is infinite, torsion free and nilpotent, we must include groups with presentation

A / Γ � Z ,

where the generator of Γ/A acts on A ∼= Z× Z by means of the matrix
(

1 b
0 1

)
, b ∈ Z.

If the centre ζ(Γ) has trivial intersection with the subgroup A show that Γ is abelian.
Exhibit an example of a torsion free extension of such an abelian group by the finite cyclic
group Z/4. For which other finite groups Q do such torsion free extensions exist?
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3 Let Γ be a PDn-group. Explain how the duality between homology and cohomology
follows from the condition

Hk(Γ, ZΓ) ∼=
{ Z, k = 0, n,

0 otherwise.

Prove that if Γ1 has finite index in Γ, then Γ is a PDn-group if and only if Γ1 is a
PDn-group.

Why would you expect a PD2-group to be a surface group?

4 Outline the main steps in the proof of the Loop Theorem, and give two applications
of it to the classification of 3-manifolds.

5 Write an essay on the isometrics of a C∞-manifold, paying special attention to
dimension 3.

END OF PAPER
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