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There are FOUR, questions in total.

The questions carry equal weight.

The signature is (+ — — — ), and the curvature tensor conventions are defined by

Rzkmn = F’Lkm,n - F’Lkn,m, - szmrpkn + sznrpkm .

STATIONERY REQUIREMENTS
Cover sheet

Treasury Tag
Script paper

SPECIAL REQUIREMENTS
Information sheet

You may not start to read the questions
printed on the subsequent pages until

instructed to do so by the Invigilator.




B UNIVERSITY OF
¥ CAMBRIDGE 2

1 Write down formulae for the components of the Lie derivative of a scalar field f
and a vector field X with respect to a vector field €. Show that if there is a metric gqp
with a symmetric connection then

LeX =VeX — Vi€,
If X and Y are arbitrary vector fields deduce
(Leg),, XYP =260, XY
The vector field £ is said to be Killing iff L¢gqa, = 0. Deduce Killing’s equation
§(ap) = 0.

If ¢ is Killing, deduce that
fb;ca = _Rbcadgd .

Suppose point P is arbitrary and + is an arbitrary curve through P with tangent
vector V. Setting Lq, = £, deduce that

Vvéa = LapV?, Vv Lap = —RapeVeEy .

Deduce that if a Killing vector and its first covariant derivative vanish at a point P then
they vanish everywhere. In a manifold of dimension n how many linearly independent
Killing vectors can there be?

2 Write an essay on the role of curvature in general relativity and (stating carefully
the assumptions made) the derivation of the Einstein field equations. Your account should
pay particular attention to the existence of freely falling frames, the tensorial nature of
relative acceleration of neighbouring freely falling particles and the non-vanishing of the
Riemann curvature tensor.
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3 Consider the linearized Einstein equations for a point mass M at the origin,
0T = M§(x)UU® with U® = (1,0). Obtain the linearized Schwarzschild solution

ds®* = (1 —rg/r)dt* — (1 +rg/r)dr* — r?(d6* + sin? 6 dp?),

where rg = 2G M.

Next consider null geodesics moving, without loss of generality, in the equatorial
plane 6 = %77. Setting u = rg/r show that, within linearized theory,

du\? r2E?
() =5 -,

where E and h are constants whose physical significance should be described. Investigate
whether, for special choices of E/h, circular orbits are possible, and if so discuss their
stability.

[You may use any information from the lecture handout included with this examination
paper.]

4 Let dX2 = db? + sin? 0 d¢? denote the line element on the unit 2-sphere, and let
~2
ds” =dt* —dr? — r? dx?

denote the Minkowski spacetime line element in spherical polar coordinates. Introduce
null coordinates u = t — r and v = t + r and make a conformal transformation to an

~2
unphysical spacetime with line element ds? = 4(1 4+ u?)~1(1 + v?)~ds . Perform further
coordinate changes p = tan~!' u, ¢ = tan~! v, followed by T'= ¢+ p, R = ¢ — p to obtain

ds? = dT? — dR? — sin® RdX?,

where the ranges of all of the coordinates ¢, r, 6, ¢, u, v, p, ¢, T and R should be stated
explicitly.

Use your results to discuss the asymptotic behaviour of Minkowski spacetime
geodesics as seen in the unphysical spacetime. What, if any, horizon structure is there?
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LINEARIZED PERTURBATIONS OF MINKOWSKI SPACETIME

In the coordinate chart used here, t is the usual time coordinate of Minkowski spacetime.
The spatial coordinates @ are arbitrary, and the background line element is

ds? = gppdaida® = dt® — *yagd:vo‘dxﬁ,

where 7,3 is a 3-metric of signature (+++), D, is the metric covariant derivative of 7,3,
A is the Laplacian and A,g = DoDg — %'yagA.

The full perturbed metric is

ds® = (14 2A4)dt* — 2Badtdz™ — [(1 + 20)yap + 2Eag)dz®dz”.

The left hand side of each equation contain spacetime tensor components and
indices are to be raised/lowered using ¢g*/g;x. When spatial indices occur on the right
hand side they should be raised/lowered using v** /7,3

Only a minimal set of non-vanishing components is presented. There are other
non-vanishing terms which can be generated using the symmetries.

Scalar perturbations in longitudinal gauge
Metric Tensor

dgoo =24, 39" =24,  8gap = —207ap, 097 =207

Connection

oT%0 = A,  T%q =DyA,  T%s = Cy*¥,
0T %0 = DA,  dT%p5=C8%, 6T, =26%43D.C —v5,D*C.

Riemann tensor
5R0a0/3 = [—C + %AA]’)/QQ + AQBA,
5R0a57 = 2704[6D7]Ca
OR® g5 = 5ACO* (yy5)5 + 20% [, Mg = Va1, A9 C

Einstein tensor

6Goo = 2AC,
6Gon = 2D, C,
6Gap = [2C — 2A(A+ O)]Vap + Aas(A + C).
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Vector perturbations in vector gauge

Metric tensor
690(1 = _Bom 5goa = —B“.

Connection

05 =—DwBg, 0T =B, 0% = 3(DgB* — D*Bp).

Riemann tensor )
§R° 003 = D(aBp),
OR’agy = DigDia By

Einstein tensor
6Goa = 3ABa,

5Gag = D(QBB).

Tensor perturbations

Metric tensor
0gap = —2Eap,  0g°F =2E°P.

Connection
6F0a,8 - Eaﬂy 5Faog = Ealg, 5Fa[37 = 2D(5

) — DEg,,.

Riemann tensor

5R0a0,8 = _Eaﬁa
SR’y = —2D(5E 0,
(5Raﬁ75 = —2D[7D|5|E5}a + 2D[7DO‘E5W.

Einstein tensor )
5Ga5 = —Eaﬁ -+ AEaﬁ.

END OF PAPER
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