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1 Consider a flat FRW universe containing only matter and a cosmological constant.

(a) Show that Friedmann’s equation may be written(
ȧ

a

)2

= H2
0

(
ΩM

a3
+ (1− ΩM )

)
, (∗)

where a(t) is the scale factor normalised to unity today. Explain the physical significance
of the parameters H0 and ΩM .

(b) By changing variables to x = a
3
2 , integrate (∗) to obtain

a(t) =
(

ΩM

1− ΩM

) 1
3 (

sinh
(

3
2H0

√
1− ΩM t

)) 2
3

.

Describe the dependence of the age of the universe on ΩM , (i) as ΩM tends to zero and
(ii) as ΩM tends to unity.

(c) Show that the furthest comoving distance an observer will ever be able to see
in such a universe, if they can see all the way back to the initial singularity, is given by:

dc = H−1
0

∫ ∞

0

dy√
(1− ΩM ) + ΩMy3

.

[Hint: change variables from t to a and then to y = 1/a.]
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2 The number density nA of particle species A in thermal equilibrium at a tempera-
ture T � MA is given by

nA = gA

(
MAT

2π

) 3
2

e(µA−MA)/T .

(a) Explain the meaning of the constants gA and µA. What determines µA?

(b) Consider protons, electrons and hydrogen atoms around the time of “recombi-
nation”, T ≈ 3000◦K ≈ 0.3 eV. Show that

nH

npne
≈

(
2π

MeT

) 3
2

e(B/T ),

where B = MP + Me −MH ≈ 13.6 eV.

(c) Using charge neutrality, np = ne, and the fact that the baryon asymmetry
η ≈ (nH + nP )/nγ is very small, explain why the temperature at which the protons and
electrons combine into neutral hydrogen is approximately given by

T ≈ B

ln
(
η−1(Me/T )

3
2

) ≈ B

ln
(
η−1(Me/B)

3
2

) � B, (∗)

where factors of order unity are ignored inside the logarithm. Using Me = 0.5 MeV and
η = 10−10, check that (∗) gives a reasonable estimate of the temperature of recombination.
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3 Consider a simple inflationary model consisting of a scalar field with potential V (φ)
in a flat FRW universe. The fluctuations of the scalar field, δφ, may be treated in the
first approximation as a massless field in a background flat FRW spacetime with Hubble
parameter H2 = 8πGV (φ)/3 ≈ const.

(a) Show that in this approximation the background metric may be written in
conformal time as a2(τ)(−dτ2 + dx2) with a(τ) = −1/(Hτ), −∞ < τ < 0.

(b) The equation of motion for a massless field in a curved spacetime is

∂µ

(√
−ggµν∂ν

)
δφ = 0. (∗)

Show that in given background, if we set δφ(τ,x) =
∑

k δφkeik·x, this becomes

δφ′′k −
2
τ

δφ′k = −k2δφk. (∗∗)

(c) Show that (∗∗) is solved by

δφ
(+)
k (τ) =

e−ikτ

√
2kV

H

(
−τ +

i

k

)
,

where V is a large comoving volume, so that
∑

k may be replaced by V
∫

d3k/(2π)3.
Describe the physical significance of this solution.

(d) The quantum field may be expressed as

δ̂φ(τ,x) =
∑
k

(
akδφ

(+)
k (τ)eik·x + h.c.

)
where h.c. denotes hermitian conjugate. Using the commutation relations [ak, ak′†] = δkk′ ,
and ak|0, in〉 = 0, show that the variance of the quantum field in the incoming Minkowski
vacuum |0, in〉 is formally given by

〈0, in|δ̂φ2(t,x)|0, in〉 =
∑
k

1
2kV

(
1
a2

+
H2

k2

)
=

∫
d3k

(2π)3
1
2k

(
1
a2

+
H2

k2

)
.

Interpret each term and hence explain why, as τ → 0 and a becomes very large, the scalar
field acquires a scale-invariant pattern of frozen-in fluctuations.

Paper 62



5

4 Consider an inflationary model in which a scalar field φ rolls slowly down a
potential V (φ), acquiring fluctuations δφ ≈ H/(2π) on each comoving wavenumber k as
the corresponding physical wavelength λ = a(2π/k) exits the Hubble radius H−1 during
inflation.

(a) Briefly explain how the fluctuations generate a space-dependent time delay
δt = δφ/φ̇, and how this eventually leads to a growing mode density perturbation
of magnitude δρ/ρ ≈ Hδt. From the spectrum of frozen-in scalar field fluctuations,
〈δφ2〉 ≈ (H/2π)2

∫
(dk/k), explain why the final spectrum of growing-mode density

perturbations

〈(δρ/ρ)2〉 ≈
∫

dk

k

(
H2

2πφ̇

)2

, (∗)

where the integrand is to be evaluated as each scale k leaves the Hubble radius.

(b) As a given wavenumber exits the Hubble radius, we have k ≈ (2πH)a, and
we can treat H as slowly-varying. Using this relation to relate k to a, and the slow-roll
approximation for the scalar field and Friedmann equations to relate a to φ, show that

k
d

dk
≈ a

d

da
≈ φ̇

H

d

dφ
≈ −V,φ

V

d

dφ
.

in units where 8πG = 1.

(c) Hence show using (∗) that the spectral tilt ∆n, i.e., the deviation from scale-
invariance, defined by

〈(δρ/ρ)2〉 = C
∫

dk

k
k∆n,

with C a constant, is given by
∆n = −6ε + 2η,

where the slow-roll parameters ε ≡ 1
2 (V,φ/V )2 and η ≡ V,φφ/V , again in units where

8πG = 1.
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5 Consider linearised density perturbations of comoving wavenumber k in a flat FRW
universe containing only cold dark matter and radiation. In synchronous coordinates which
are comoving with the CDM, the linearised Einstein equations yield

δ′′C +
a′

a
δ′C = 4πGa2(ρCδC + 2ρRδR), (1)

where ρC and δC are the energy density and fractional energy density perturbation for the
CDM, ρR and δR are the same quantities for the radiation, and primes denote conformal
time (τ) derivatives.

(a) In the early universe, the radiation dominates. Show, using the Friedmann
equation, that a(τ) ∝ τ and 8πGρRa2 = 3τ−2. The CDM density is negligible compared to
that of radiation, but we are still interested in tracking the fractional density perturbation
in the CDM. Show that, if we choose adiabatic initial conditions δR = 4

3δC on large scales
kτ � 1, then (1) possess the growing solution

δC(τ,k) = AR(k)τ2. (2)

(b) Consider Fourier modes which are initially in the adiabatic growing solution
(2), for kτ � 1. When these modes enter the Hubble radius, i.e., when kτ grows larger
than unity, in the radiation epoch, δR oscillates and hence averages to zero. Show that in
this regime, where δR is negligible and ρC � ρR, the relevant solution of (1), with initial
conditions given by (2), is

δC(τ,k) ≈ AR(k)k−2ln(kτ). (3)

(c) In the late universe, the radiation may be neglected. Show, using the Friedmann
equation, that the scale factor a(τ) ∝ τ2 and 8πGρCa2 = 12τ−2. Hence show that (1)
possesses the growing solution

δC(τ,k) ∝ τ2, (4)

on all scales.
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