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1

Give a basis for the integral homology of CP 2 × CP 2. Compute the class of the
diagonal submanifold CP 2 ⊂ CP 2 × CP 2 in H4(CP 2 × CP 2, Z).

2

Describe a cell decomposition of RP 2 ×RP 2. Compute the cellular chain complex
of RP 2 ×RP 2 (with integer coefficients). Use this chain complex to compute the integral
homology of RP 2 × RP 2.

3

Let F be a topological space, and let π : E → B be a continuous map of topological
spaces. Say that an open subset U ⊂ B is evenly covered if there is a homeomorphism
Q : π−1(U) → U × F such that the diagram

...............................................................................................................................
...
........
.........

..................................................................................................................................... .................

.............................................................................................................................
.........
...............

..

π−1(U) U × F
Q

U

commutes. Suppose that every point of B is contained in some evenly covered open subset.
[You may use that every open subset of an evenly covered open set is evenly covered.]

Also, assume that there are classes c1, . . . , cv ∈ H∗(E, Q), cj ∈ Hkj (E, Q), whose
restrictions to π−1(p) ∼= F form a basis for H∗(F, Q) as a vector space, for each point
p ∈ B. Write i for the inclusion map from F = π−1(p) into E. Show that, for B compact,
the map

H∗(B, Q)⊗Q H∗(F, Q) → H∗(E, Q),∑
k,l bk ⊗ i∗(cl) 7−→

∑
k,l π

∗(bk) ∪ cl, is an isomorphism.

[Hint: First prove the theorem when B is replaced by a single evenly covered open
set V and E is replaced by π−1(U).]
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4

Define a 3-manifold X by starting with S2 × [0, 1] and identifying S2 × {0} with
S2 × {1} by the antipodal map. Is X orientable?

Compute the integral cohomology groups of X. Determine the cup products on the
integral cohomology. From there (or otherwise), compute the cohomology ring of X with
Z/2 coefficients.

5

(i) Show that the symmetric group S3 can act freely on the closed orientable surface
of genus 7. [Hint: what might the quotient space be? ]

(ii) Define the cap product ∩ : H∗(X, R) ×H∗(X, R) → H∗(X, R), for a space X
and a commutative ring R. (Do not check that it is well-defined.) For a continuous map
f : X → Y , prove that

f∗ (x ∩ f∗(α)) = f∗(x) ∩ α

for all x ∈ H∗(X, R) and α ∈ H∗(Y, R) .

END OF PAPER
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