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1 Define what is meant by a prevariety being separated and by a variety being
complete. Show that any projective variety is necessarily both separated and complete.

2 Let ¢ : (Y,0y) — (X,0x) be a morphism of varieties, let F be an Oy-module,
and let G, ‘H be Ox-modules. Describe the constructions of

(i) the Ox-module G ®p,, H,
(ii) the Ox-module ¢.F, and
(iii) the Oy-module ¢*H.

Given an affine variety V' and a k[V]-module M, describe the construction of the
associated quasi-coherent sheaf M on V with M (V) = M — you may omit the proof
that the sheaf conditions (A) and (B) hold. Assuming the fact that any quasi-coherent
sheaf on an affine variety is of this form, interpret the constructions (i), (ii), (iii) above
(in terms of modules over the appropriate rings) when the sheaves are quasi-coherent and
¢ is a morphism of affine varieties.

If now ¢ : Y — X is a morphism of affine varieties and M is a module over k[X],
prove that ¢.¢*"M = M ®0, ¢.Oy.

[The construction of the sheafification of a presheaf, and its properties, may be
assumed throughout in this question, as may standard results from commutative algebra.]
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3 Quoting the elementary results on flabby sheaves that you need, describe briefly
the construction of sheaf cohomology on a topological space X, via a particular choice of
flabby resolutions. Deduce from your construction that, for F any flabby sheaf, the higher
cohomology H*(X,F) =0 for i > 0.

Suppose now that X is a variety and F an O x-module; we define a rational section
of F to be an equivalence class of pairs (U, s), where U is an open dense subset of X and
s € F(U), under the equivalence relation ~ defined by (U, s) ~ (V,t) if there exists an
open dense subset W of X with W C UNV and s|w = t|w. Show that the set Rat(F) of
rational sections of F forms a module over the ring of rational functions Rat(X). From
now on, we suppose that X is irreducible and F is locally free; show that, for any P € X,
there is an inclusion map of the stalk Fp into Rat(F).

Suppose further that X is an irreducible curve. We denote by R(F) the constant
sheaf on X corresponding to Rat(F), and define a sheaf P(F) on X by

T(U,P(F)) = @ Rat(F)/Fp,
PeU

with the obvious restriction maps. Justify the fact that that P(F) is a sheaf, and prove
that there is a short exact sequence of sheaves

0—F —R(F)— P(F)—0.

Find an example where the natural map

Rat(F) — @ Rat(F)/Fp

PeX

is not surjective. What happens when X is affine? Justify your answers.
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4 Describe the construction of the invertible sheaves Opn(m) on P" (where m € Z).
Letting 7 : A"\ {0} — P" denote the standard map, and U denote an open subset of P,
show that the non-zero elements of I'(U, Op~ (m)) may be identified as quotients of coprime
homogeneous polynomials in Xg, X1, ..., X,, say F/G, with G # 0 and degF —degG = m,
such that F/G defines a regular function on 7= 1(U).

Consider now the sheaf of regular 1-forms Q.. Suppose that f = P/(Q is a rational
function given as the quotient of homogeneous polynomials of the same degree, with Q) # 0,
which is regular on an open set U. Show that, for each 0 < ¢ < n, there is a well-defined
element 0f/0X; of I'(U, Opn(—1)). Deduce the existence of a sequence of morphisms

O — Q%jn — @Opn(—l) — OP'IL — O’
1=0

where the second of the unknown maps is defined by the recipe (suitably interpreted)

n
(907917"' 7gn) — ZXlgl
=0

By reducing down to affine pieces, show that the sequence is a short exact sequence.

Quoting appropriate results concerning the dimension of H*(P™, Op»(m)), find the
dimension of H*(P", QL) for all 0 < i < n.

END OF PAPER
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