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1 The complex amplitude K(q1, q0;T ) is defined by the path integral over paths q(t),

K(q1, q0;T ) =
∫

d[q] eiS[q] ,

where

S[q] =
∫ T

0

dt
(1

2
m q̇2 − V (q)

)
, q(0) = q0 , q(T ) = q1 .

Show that an approximation obtained by first letting q(t) = qc(t) + f(t), where qc(t) is a
classical path obeying the required boundary conditions, gives

K(q1, q0;T ) ≈ D(T ) eiS[qc] ,

where D(T ) may be related to the functional determinant of a suitable operator. Explain
why this approximation is exact if V (q) is quadratic in q and D(T ) is then independent
of q0, q1.

Show how these results are consistent with the free expression, when V = 0,

K0(q1, q0;T ) =
(

m

2πiT

)1
2

ei
1
2m(q1−q0)2/T . (∗)

Obtain the result for K for motion in a gravitational field when V (q) = −mgq.

For general V show how K(q1, q0;−iT ) can be expanded in terms of contributions
involving the energy eigenvalues En and associated wave functions ψn(q) for the corre-
sponding quantum Hamiltonian.

Consider a free particle on a circle so that q ∼ q + 2πn. Explain why K(q1, q0;T )
can be written as

K(q1, q0;T ) =
∑
n

K0(q1 + 2πn, q0;T ) ,

where K0 is defined in (∗). Use this result to determine the energy eigenvalues and wave
functions.

[The identity ∑
n

e−
1
2 (x+2πn)2/y =

(
y

2π

)1
2 ∑

n

e−
1
2n

2y+inx ,

is important.]
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2 Let L(φ, ∂φ) be the Lagrangian density for a multi-component scalar field φ =
(φ1, φ2, . . .). Suppose L is invariant under transformations δφ = εataφ for arbitrary
infinitesimal constants εa and {ta} is a set of antisymmetric matrices acting on φ.
Show how this can be extended to any local εa(x) if ∂µφ → Dµφ = ∂µφ + Aµataφ if
δAµa = −∂µεa − fbcaAµbεc assuming [ta, tb] = fabctc.

Let S[φ, J,A] =
∫
ddx

(
L(φ,Dφ) + J · φ

)
for arbitrary J(x) and J · φ = Jiφi. Show

that (
(taφ) · δ

δφ
+ (taJ) · δ

δJ
+ ∂µ

δ

δAµa
+ fabcAµb

δ

δAµc

)
S[φ, J,A] = 0 . (∗)

For the corresponding quantum field theory we define

Z[J,A] =
∫

d[φ] eiS[φ,J,A] ,

and then

Z[J,A] = eiW [J,A] ,
δ

δJi(x)
W [J,A] = ϕi(x) , Γ[ϕ,A] = −W [J,A] +

∫
ddxJ · ϕ .

Let τ̂i1...in(p1, . . . , pn) be defined by∫ n∏
r=1

ddxr eipr·xr
δ

δϕi1(x1)
. . .

δ

δϕin(xn)
Γ[ϕ, 0]

∣∣∣
ϕ=0

= (2π)dδd
(∑

rpr
)
τ̂i1...in(p1, . . . , pn) .

Describe briefly the contributions to this amplitude in terms of Feynman diagrams.

Starting from the identity (∗) for S obtain a corresponding identity for Z and hence
derive (

(taϕ) · δ
δϕ

+ ∂µ
δ

δAµa
+ fabcAµb

δ

δAµc

)
Γ[ϕ,A] = 0 . (∗∗)

[It is necessary to show that δW/δA|J = −δΓ/δA|ϕ and (taJ) · ϕ = −J · (taϕ).]

Define∫ 3∏
r=1

ddxr eipr·xr
δ

δAµa(x1)
δ

δϕi(x2)
δ

δϕj(x3)
Γ[ϕ,A]

∣∣∣
ϕ,A=0

= (2π)dδd
(∑

rpr
)
τ̂µa,ij(p1, p2, p3) .

Show from the identity (∗∗)

p1µτ̂
µ
a,ij(p1, p2, p3) = i(ta)ik τ̂kj(p1 + p2, p3)− τ̂ik(p2, p3 + p1) i(ta)kj . (†)

Suppose L(φ,Dφ) = − 1
2

(
(Dµφ) · (Dµφ) +m2φ · φ

)
. Explain why

τ̂µa,ij(p1, p2, p3) = −i(p2 − p3)µ (ta)ij ,

is sufficient to verify (†) in this case.
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3 Consider a quantum field theory with a single scalar field φ and a Lagrangian
density

L = − 1
2 (∂φ)2 − V (φ) .

What does it mean to say that the theory is renormalisable? In four dimensions obtain
restrictions on V (φ) which ensure that the theory is renormalisable. How is the bare
Lagrangian density defined?

Suppose the theory has a single dimensionless coupling g and no mass parame-
ters. Let 〈φ(x1) . . . φ(xn)〉 be the finite correlation function determined by perturbation
expansion of the quantum field theory as a series in g. Why must this also depend on an
additional scale µ? Describe the derivation of the equation(

µ
∂

∂µ
+ β(g)

∂

∂g
+ nγ(g)

)
〈φ(x1) . . . φ(xn)〉 = 0 ,

and briefly discuss its interpretation.

Assuming ∫
d4x eip·x〈φ(x)φ(0)〉 = −i d(p2/µ2, g)

p2
,

show how the behaviour of d(p2/µ2, g) for large p2 depends on the form of β(g). If
β(g) = −bg3, γ(g) = cg2 with b > 0 find an expression for d(p2/µ2, g) for large p2. If
β(g) = −bg3 − ag5 and b < 0, a > 0 what happens for large p2?
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4 Explain why gauge fixing is necessary for obtaining a perturbative expansion in
quantum gauge theories. Suppose for a gauge theory the quantum action is

Sq[A, c, c̄] = − 1
g2

∫
ddx

(
1
4
Fµν · Fµν +

1
2ξ
∂µAµ · ∂νAν + ∂µc̄ ·Dµc

)
,

where Aµa is a gauge field, ca, c̄a are ghost fields and

Fµν a = ∂µAνa − ∂νAµa + fabcAµbAνc , (Dµc)a = ∂µca + fabcAµbcc .

For a perturbation expansion in g derive expressions for the the free field propagators
defined by ∫

ddx e−ip·x〈Aµa(x)Aνb(0)〉 = δab i∆̃Fµν(p) ,∫
ddx e−ip·x〈ca(x) c̄b(0)〉 = δab i∆̃F (p) .

Verify that ∆̃Fµν(p)pν = ξ pµ∆̃F (p).

By isolating the relevant term in Sq show that the Feynman rules for a vertex
involving the fields c̄aAµbcc require a contribution g pµfabc, where pµ is the incoming
momentum on the c̄ line.

Assuming ξ = 1 write down an expression for the one loop contribution to∫
ddx e−ip·x〈ca(x) c̄b(0)〉. Show that it involves the integral

1
(2π)di

∫
ddk

p · k
((p− k)2 − iε)(k2 − iε)

=
(p2)

1
2d−1

(4π)
1
2d

Γ(2− 1
2d)

∫ 1

0

dαα
1
2d−2(1− α)

1
2d−1 .

Sketch how this result for the Feynman integral is obtained and using dimensional
regularisation determine the divergent part of this amplitude. How is this divergence
cancelled by introducing a counterterm in the quantum action?

[You may use facdfbcd = C δab, with C a group theory constant. Γ(a) is here the standard
Gamma function, Γ(1) = 1, Γ(a+ 1) = aΓ(a).]
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