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1 Explain how for anti-commuting variables θi, θiθj = −θjθi, integration may be
defined so that ∫

dθn . . .dθ1 θi1 . . . θin
= εi1...in

, ε12...n = 1 .

Show that for an n×n matrix B and with θ = (θ1, . . . θn), θ̄ = (θ̄1, . . . , θ̄n) anti-commuting
n-vectors ∫ n∏

i=1

dθ̄idθi exp
(
−θ̄ ·B θ

)
= detB .

Let 〈
O(θ, θ̄)

〉
=

1
detB

∫ n∏
i=1

dθ̄idθi O(θ, θ̄) exp
(
−θ̄ ·B θ

)
,

for any polynomial O(θ, θ̄). Show that〈
θi θ̄j

〉
= (B−1)ij .

What is
〈
θi θ̄j θk θ̄l

〉
? Show that for n× n matrices M , N〈

(θ̄ ·M θ) (θ̄ ·N θ)
〉

= −tr
(
MB−1NB−1

)
+ tr

(
MB−1

)
tr

(
NB−1

)
.

Sketch appropriate Feynman diagrams for this.

For Dirac fermion fields ψ, ψ̄ and a free action S = −
∫

ddx ψ̄(γ · ∂ +m)ψ, with γµ

gamma matrices satisfying {γµ, γν} = 2ηµν , show that〈
ψ(x) ψ̄(0)〉 = iSF (x) ,

where the Feynman propagator has the Fourier transform

S̃F (p) =
−iγ · p+m

−p2 −m2 + iε
.
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2 Show that, for kµ a d-dimensional vector and k2 = kµkµ,

1
(2π)d

∫
ddk

1
(k2 +m2)n

=
1

(n− 1)!
1

(4π)
1
2 d

Γ(n− 1
2d) (m2)

1
2 d−n .

Using this verify that

1
(2π)d

∫
ddk

1
(k2 +m2)((p− k)2 +m2)

∼ 1
8π2ε

as ε = 4− d→ 0 .

For a scalar field theory in d-dimensions with Lagrangian density

L = − 1
2 (∂φ)2 − 1

2m
2φ2 − 1

24 µ
ελφ4 ,

what are the Feynman rules? Draw the one loop connected one particle irreducible
Feynman graphs with two and four external lines. Show that we may cancel the divergences
which arise at one loop for ε→ 0 by adding to L

Lc.t. = − 1
2

λm2

16π2ε
φ2 − 1

24 µ
ε 3λ2

16π2ε
φ4 .

Define the bare coupling λ0 and determine

β̂(λ) = µ
d
dµ
λ
∣∣∣
λ0

= −ελ+ β(λ) ,

to one loop. The running coupling λ(µ) is defined by

µ
d
dµ
λ(µ) = β̂

(
λ(µ)

)
.

Assuming that β̂(λ) is O(λ2) sketch a graph for ε > 0 and determine what happens for
this case to λ(µ) as µ→ 0 and µ→∞.

[You may assume
∫

ddk e−αk2
= (π/α)

1
2 d for α > 0, and also

∫∞
0

ds sa−1e−s = Γ(a) defines
the standard Gamma function, Γ(1) = 1, Γ(a+ 1) = aΓ(a).]
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3 Consider a quantum field theory with a single scalar field φ and a Lagrangian
density

L = − 1
2 (∂φ)2 − V (φ) ,

and define
eiW [J] =

∫
d[φ] eiS[φ]+i

∫
ddx φJ , S[φ] =

∫
ddxL .

Let
ϕ =

δ

δJ
W [J ] , Γ[ϕ] = −W [J ] +

∫
ddxϕJ .

Describe briefly how Γ[ϕ] is related to connected one particle irreducible Feynman
diagrams.

Writing φ = ϕ+ f and keeping terms only up to second order in the expansion of
S[φ] show that we then have

Γ[ϕ] = −S[ϕ] +
1
2i

ln det∆ , ∆ = −∂2 + V ′′(ϕ) .

Let ϕ be a constant and show that after subtracting a divergence in four dimensions we
may define an effective potential from the result for Γ which is of the form

Veff(ϕ) = V (φ) +
1

64π2
V ′′(ϕ)2

(
lnV ′′(ϕ) + const.

)
.

Why is V (φ) a quartic polynomial a special case?

[You may assume, using Wick rotation,

1
(2π)di

∫
ddk ln(k2 +A) = −

Γ(− 1
2d)

(4π)
1
2 d

A
1
2 d , A > 0 . ]
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4 G is a continuous group with elements g(θ) for θ = (θ1, . . . , θp) and g(0) = 1, the
identity. Near the identity g(θ) ≈ 1 + θiti. Let dµ(θ) define integration over G so that if
g(θ)g0 = g(θ′) then dµ(θ) = dµ(θ′) and also for θ ≈ 0, dµ(θ) ≈ dpθ.

Suppose x is a n-dimensional vector which transforms under the group G so that
x→ xg with dnx = dnxg. Assume Fj(x), j = 1, . . . , p, are functions such that a solution
to Fj(x0) = 0 for x0 = xg0 is possible for a unique g0 and any x. Why must

Fj

(
x0

g(θ)
)

= Mji(x0)θi as θi → 0 .

If f(x) = f(xg), for any g ∈ G, show that∫
dnx f(x) = C

∫
dnx δp

(
F (x)

)
detM(x) f(x) , C =

∫
dµ(θ) .

Explain why these considerations are relevant to the quantisation of gauge theories.
With Aµ a gauge field belonging to the Lie algebra of a gauge group and Fµν the field
strength describe how starting from a classical gauge invariant action L = − 1

4F
µν · Fµν

we are led to a quantum Lagrangian

Lq = − 1
4F

µν · Fµν + b · FµAµ + 1
2ξ b · b+ c̄ · Fµ(Dµc) ,

where FµAµ is a linear gauge fixing function, Dµ a covariant derivative, ξ a parameter
and b, c̄, c are additional fields whose role should be explained.
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