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Paper 1, Section II

24G Algebraic Geometry

(i) Let X = {(x, y) ∈ C 2 | x 2 = y 3}. Show that X is birational to A1, but not

isomorphic to it.

(ii) Let X be an affine variety. Define the dimension of X in terms of the tangent

spaces of X .

(iii) Let f ∈ k [x1, . . . , xn] be an irreducible polynomial, where k is an algebraically

closed field of arbitrary characteristic. Show that dim Z(f) = n− 1 .

[You may assume the Nullstellensatz.]

Paper 2, Section II

24G Algebraic Geometry

Let X = Xn,m,r be the set of n×m matrices of rank at most r over a field k. Show

that Xn,m,r is naturally an affine subvariety of Anm and that Xn,m,r is a Zariski closed

subvariety of Xn,m,r+1.

Show that if r < min(n,m), then 0 is a singular point of X.

Determine the dimension of X 5,2,1.

Paper 3, Section II

23G Algebraic Geometry

(i) Let X be a curve, and p ∈ X be a smooth point on X . Define what a local

parameter at p is.

Now let f : X 99K Y be a rational map to a quasi-projective variety Y . Show that if Y is

projective, f extends to a morphism defined at p.

Give an example where this fails if Y is not projective, and an example of a morphism

f : C 2 \ {0} → P 1 which does not extend to 0 .

(ii) Let V = Z(X 8
0 + X 8

1 + X 8
2 ) and W = Z(X 4

0 + X 4
1 + X 4

2 ) be curves

in P2 over a field of characteristic not equal to 2. Let φ : V → W be the map

[X 0 : X 1 : X 2] 7→ [X 2
0 : X 2

1 : X 2
2 ]. Determine the degree of φ, and the ramification

ep for all p ∈ V .
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Paper 4, Section II

23G Algebraic Geometry

Let E ⊆ P2 be the projective curve obtained from the affine curve

y 2 = (x− λ1)(x− λ2)(x− λ3), where the λ i are distinct and λ1 λ2 λ3 6= 0 .

(i) Show there is a unique point at infinity, P∞ .

(ii) Compute div(x), div(y).

(iii) Show L (P∞) = k .

(iv) Compute l(nP∞) for all n .

[You may not use the Riemann–Roch theorem.]
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Paper 1, Section II

21H Algebraic Topology
State the path lifting and homotopy lifting lemmas for covering maps. Suppose that

X is path connected and locally path connected, that p1 : Y1 → X and p2 : Y2 → X are cov-
ering maps, and that Y1 and Y2 are simply connected. Using the lemmas you have stated,
but without assuming the correspondence between covering spaces and subgroups of π1,
prove that Y1 is homeomorphic to Y2.

Paper 2, Section II

21H Algebraic Topology
Let G be the finitely presented group G = 〈a, b | a2 b3 a3 b2 = 1〉. Construct a path

connected space X with π1(X,x) ∼= G. Show that X has a unique connected double cover
π : Y → X , and give a presentation for π1(Y, y).

Paper 3, Section II

20H Algebraic Topology
Suppose X is a finite simplicial complex and that H∗(X) is a free abelian group for

each value of ∗ . Using the Mayer-Vietoris sequence or otherwise, compute H∗(S1 ×X) in
terms of H∗(X). Use your result to compute H∗(T n).

[Note that T n = S1 × . . . × S1 , where there are n factors in the product.]

Paper 4, Section II

21H Algebraic Topology
State the Snake Lemma. Explain how to define the boundary map which appears

in it, and check that it is well-defined. Derive the Mayer-Vietoris sequence from the Snake
Lemma.

Given a chain complex C, let A ⊂ C be the span of all elements in C with grading
greater than or equal to n , and let B ⊂ C be the span of all elements in C with grading
less than n . Give a short exact sequence of chain complexes relating A , B, and C. What
is the boundary map in the corresponding long exact sequence?
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Paper 1, Section II

34B Applications of Quantum Mechanics
Give an account of the variational principle for establishing an upper bound on the

ground-state energy, E0, of a particle moving in a potential V (x) in one dimension.

Explain how an upper bound on the energy of the first excited state can be found
in the case that V (x) is a symmetric function.

A particle of mass 2m = ~2 moves in the potential

V (x) = −V0 e−x2
, V0 > 0 .

Use the trial wavefunction
ψ(x) = e−

1
2
ax2

,

where a is a positive real parameter, to establish the upper bound E0 6 E(a) for the
energy of the ground state, where

E(a) =
1

2
a− V0

√
a√

1 + a
.

Show that, for a > 0, E(a) has one zero and find its position.

Show that the turning points of E(a) are given by

(1 + a)3 =
V 2
0

a
,

and deduce that there is one turning point in a > 0 for all V0 > 0.

Sketch E(a) for a > 0 and hence deduce that V (x) has at least one bound state for
all V0 > 0.

For 0 < V0 ≪ 1 show that

−V0 < E0 6 ǫ(V0) ,

where ǫ(V0) = − 1
2 V

2
0 + O(V 4

0 ).

[You may use the result that
∫ ∞
−∞ e−bx2

dx =
√

π
b for b > 0.]
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Paper 2, Section II

34B Applications of Quantum Mechanics
A beam of particles of mass m and momentum p = ~k is incident along the z-axis.

Write down the asymptotic form of the wave function which describes scattering under
the influence of a spherically symmetric potential V (r) and which defines the scattering
amplitude f(θ).

Given that, for large r,

eikr cos θ ∼ 1

2ikr

∞∑

l=0

(2l + 1)
(
eikr − (−1)l e−ikr

)
Pl(cos θ) ,

show how to derive the partial-wave expansion of the scattering amplitude in the form

f(θ) =
1

k

∞∑

l=0

(2l + 1) eiδl sin δl Pl(cos θ) .

Obtain an expression for the total cross-section, σ.

Let V (r) have the form

V (r) =

{
−V0 , r < a ,
0 , r > a ,

where V0 =
~2

2m
γ 2.

Show that the l = 0 phase-shift δ0 satisfies

tan(ka+ δ0)

ka
=

tan κa

κa
,

where κ 2 = k 2 + γ 2.

Assume γ to be large compared with k so that κ may be approximated by γ. Show,
using graphical methods or otherwise, that there are values for k for which δ0(k) = nπ
for some integer n, which should not be calculated. Show that the smallest value, k0, of k
for which this condition holds certainly satisfies k0 < 3π/2a.
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Paper 3, Section II

34B Applications of Quantum Mechanics
State Bloch’s theorem for a one dimensional lattice which is invariant under

translations by a.

A simple model of a crystal consists of a one-dimensional linear array of identical
sites with separation a. At the nth site the Hamiltonian, neglecting all other sites, is Hn

and an electron may occupy either of two states, φn(x) and χn(x), where

Hn φn(x) = E0 φn(x) , Hn χn(x) = E1 χn(x) ,

and φn and χn are orthonormal. How are φn(x) and χn(x) related to φ0(x) and χ0(x)?

The full Hamiltonian is H and is invariant under translations by a. Write trial
wavefunctions ψ(x) for the eigenstates of this model appropriate to a tight binding
approximation if the electron has probability amplitudes bn and cn to be in the states
φn and χn respectively.

Assume that the only non-zero matrix elements in this model are, for all n,

(φn,Hn φn) = E0 , (χn,Hn χn) = E1 ,

(φn, V φn±1) = (χn, V χn±1) = (φn, V χn±1) = (χn, V φn±1) = −A ,

where H = Hn + V and A > 0. Show that the time-dependent Schrödinger equation
governing the amplitudes becomes

i~ ḃn = E0 bn −A(bn+1 + bn−1 + cn+1 + cn−1) ,

i~ ċn = E1 cn −A(cn+1 + cn−1 + bn+1 + bn−1) .

By examining solutions of the form

(
bn
cn

)
=

(
B
C

)
e i(kna−Et/~) ,

show that the allowed energies of the electron are two bands given by

E =
1

2
(E0 +E1 − 4A cos ka)± 1

2

√
(E0 − E1)2 + 16A2 cos2 ka .

Define the Brillouin zone for this system and find the energies at the top and bottom
of both bands. Hence, show that the energy gap between the bands is

∆E = −4A+
√
(E1 −E0)2 + 16A2 .

Show that the wavefunctions ψ(x) satisfy Bloch’s theorem.

Describe briefly what are the crucial differences between insulators, conductors and
semiconductors.
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Paper 4, Section II

33B Applications of Quantum Mechanics
The scattering amplitude for electrons of momentum ~k incident on an atom located

at the origin is f(r̂) where r̂ = r/r. Explain why, if the atom is displaced by a position
vector a, the asymptotic form of the scattering wave function becomes

ψk(r) ∼ e ik·r + e ik·a
e ikr

′

r′
f(r̂′) ∼ e ik·r + e i(k−k′)·a e

ikr

r
f(r̂) ,

where r′ = r − a, r′ = |r′|, r̂′ = r′/r′ and k = |k|, k′ = kr̂. For electrons incident on
N atoms in a regular Bravais crystal lattice show that the differential cross-section for
scattering in the direction r̂ is

dσ

dΩ
= N |f(r̂)|2 ∆(k− k′) .

Derive an explicit form for ∆(Q) and show that it is strongly peaked when Q ≈ b for b
a reciprocal lattice vector.

State the Born approximation for f(r̂) when the scattering is due to a potential
V (r). Calculate the Born approximation for the case V (r) = −a δ(r).

Electrons with de Broglie wavelength λ are incident on a target composed of many
randomly oriented small crystals. They are found to be scattered strongly through an angle
of 60◦. What is the likely distance between planes of atoms in the crystal responsible for
the scattering?
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Paper 1, Section II

27I Applied Probability
(a) Define what it means to say that π is an equilibrium distribution for a Markov

chain on a countable state space with Q-matrix Q = (q ij), and give an equation which
is satisfied by any equilibrium distribution. Comment on the possible non-uniqueness of
equilibrium distributions.

(b) State a theorem on convergence to an equilibrium distribution for a continuous-
time Markov chain.

A continuous-time Markov chain (Xt, t > 0) has three states 1, 2, 3 and the Q-
matrix Q = (q ij) is of the form

Q =



−λ1 λ1/2 λ1/2
λ2/2 −λ2 λ2/2
λ3/2 λ3/2 −λ3


 ,

where the rates λ1, λ2, λ3 ∈ [ 0,∞) are not all zero.

[Note that some of the λi may be zero, and those cases may need special treatment.]

(c) Find the equilibrium distributions of the Markov chain in question. Specify the
cases of uniqueness and non-uniqueness.

(d) Find the limit of the transition matrix P (t) = exp(tQ) when t → ∞.

(e) Describe the jump chain (Yn) and its equilibrium distributions. If P̂ is the jump
probability matrix, find the limit of P̂ n as n → ∞.
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Paper 2, Section II

27I Applied Probability
(a) Let Sk be the sum of k independent exponential random variables of rate kµ.

Compute the moment generating function φSk
(θ) = EeθSk of Sk. Show that, as k → ∞,

functions φSk
(θ) converge to a limit. Describe the random variable S for which the limiting

function limk→∞ φSk
(θ) coincides with EeθS .

(b) Define the M/G/1 queue with infinite capacity (sometimes written M/G/1/∞).
Introduce the embedded discrete-time Markov chain (Xn) and write down the recursive
relation between Xn and Xn−1.

Consider, for each fixed k and for 0 < λ < µ, an M/G/1/∞ queue with arrival rate
λ and with service times distributed as Sk. Assume that the queue is empty at time 0.
Let Tk be the earliest time at which a customer departs leaving the queue empty. Let A
be the first arrival time and Bk = Tk −A the length of the busy period.

(c) Prove that the moment generating functions φBk
(θ) = EeθBk and φSk

(θ) are
related by the equation

φBk
(θ) = φSk

(
θ − λ

(
1− φBk

(θ)
))

,

(d) Prove that the moment generating functions φTk
(θ) = EeθTk and φSk

(θ) are
related by the equation

λ− θ

λ
φTk

(θ) = φSk

(
(λ− θ)

(
φTk

(θ)− 1
))

.

(e) Assume that, for all θ < λ,

lim
k→∞

φBk
(θ) = EeθB, lim

k→∞
φTk

(θ) = EeθT ,

for some random variables B and T . Calculate EB and ET . What service time distribution
do these values correspond to?
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Paper 3, Section II

26I Applied Probability
Cars looking for a parking space are directed to one of three unlimited parking lots

A, B and C. First, immediately after the entrance, the road forks: one direction is to lot
A, the other to B and C. Shortly afterwards, the latter forks again, between B and C. See
the diagram below.

C

B

A

Entrance

The policeman at the first road fork directs an entering car with probability 1/3 to
A and with probability 2/3 to the second fork. The policeman at the second fork sends
the passing cars to B or C alternately: cars 1, 3, 5, ... approaching the second fork go to
B and cars 2, 4, 6, ... to C.

Assuming that the total arrival process (N(t)) of cars is Poisson of rate λ, consider
the processes (X A(t)), (X B(t)) and (X C(t)), t > 0 , where Xi(t) is the number of cars
directed to lot i by time t, for i =A, B, C. The times for a car to travel from the first to
the second fork, or from a fork to the parking lot, are all negligible.

(a) Characterise each of the processes (X A(t)), (X B(t)) and (X C(t)), by specifying
if it is (i) Poisson, (ii) renewal or (iii) delayed renewal. Correspondingly, specify the rate,
the holding-time distribution and the distribution of the delay.

(b) In the case of a renewal process, determine the equilibrium delay distribution.

(c) Given s, t > 0, write down explicit expressions for the probability
P
(
Xi(s) = Xi(s + t)

)
that the interval (s, t + s) is free of points in the corresponding

process, i = A,B,C .
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Paper 4, Section II

26I Applied Probability
(a) Let (Xt) be an irreducible continuous-time Markov chain on a finite or countable

state space. What does it mean to say that the chain is (i) transient, (ii) recurrent,
(iii) positive recurrent, (iv) null recurrent? What is the relation between equilibrium
distributions and properties (iii) and (iv)?

A population of microorganisms develops in continuous time; the size of the
population is a Markov chain (Xt) with states 0, 1, 2, ... Suppose Xt = n. It is known
that after a short time s , the probability that Xt increased by one is λ(n+1)s+ o(s) and
(if n > 1) the probability that the population was exterminated between times t and t+ s
and never revived by time t + s is µs + o(s). Here λ and µ are given positive constants.
All other changes in the value of Xt have a combined probability o(s).

(b) Write down the Q-matrix of Markov chain (Xt) and determine if (Xt) is
irreducible. Show that (Xt) is non-explosive. Determine the jump chain.

(c) Now assume that
µ = λ .

Determine whether the chain is transient or recurrent, and in the latter case whether it
is positive or null recurrent. Answer the same questions for the jump chain. Justify your
answers.
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Paper 1, Section II

31C Asymptotic Methods
For λ > 0 let

I(λ) =

∫ b

0
f(x) e−λx dx , with 0 < b < ∞ .

Assume that the function f(x) is continuous on 0 < x 6 b, and that

f(x) ∼ xα
∞∑

n=0

an x
nβ,

as x → 0+ , where α > −1 and β > 0.

(a) Explain briefly why in this case straightforward partial integrations in general
cannot be applied for determining the asymptotic behaviour of I(λ) as λ → ∞.

(b) Derive with proof an asymptotic expansion for I(λ) as λ → ∞.

(c) For the function

B(s, t) =

∫ 1

0
us−1 (1− u)t−1 du , s, t > 0 ,

obtain, using the substitution u = e−x, the first two terms in an asymptotic expansion as
s → ∞. What happens as t → ∞?

[Hint: The following formula may be useful

Γ(y) =

∫ ∞

0
xy−1 e−x dt , for x > 0 . ]

Paper 3, Section II

31C Asymptotic Methods
Consider the ordinary differential equation

y′′ = (|x| −E) y ,

subject to the boundary conditions y(±∞) = 0. Write down the general form of the
Liouville-Green solutions for this problem for E > 0 and show that asymptotically the
eigenvalues En, n ∈ N and En < En+1, behave as En = O(n2/3) for large n.
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Paper 4, Section II

31C Asymptotic Methods
(a) Consider for λ > 0 the Laplace type integral

I(λ) =

∫ b

a
f(t) e−λφ(t) dt ,

for some finite a, b ∈ R and smooth, real-valued functions f(t), φ(t). Assume that the
function φ(t) has a single minimum at t = c with a < c < b. Give an account of Laplace’s
method for finding the leading order asymptotic behaviour of I(λ) as λ → ∞ and briefly
discuss the difference if instead c = a or c = b, i.e. when the minimum is attained at the
boundary.

(b) Determine the leading order asymptotic behaviour of

I(λ) =

∫ 1

−2
cos t e−λt2 dt , (∗)

as λ → ∞.

(c) Determine also the leading order asymptotic behaviour when cos t is replaced
by sin t in (∗).
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Paper 1, Section I

9D Classical Dynamics
A system with coordinates qi, i = 1, . . . , n, has the Lagrangian L(qi, q̇i). Define the

energy E.

Consider a charged particle, of mass m and charge e, moving with velocity v in the
presence of a magnetic field B = ∇ × A. The usual vector equation of motion can be
derived from the Lagrangian

L =
1

2
m v2 + e v ·A ,

where A is the vector potential.

The particle moves in the presence of a field such that

A = (0, r g(z), 0) , g(z) > 0 ,

referred to cylindrical polar coordinates (r, φ, z). Obtain two constants of the motion, and
write down the Lagrangian equations of motion obtained by variation of r, φ and z.

Show that, if the particle is projected from the point (r0, φ0, z0) with velocity
(0,−2 (e/m) r0 g(z0), 0), it will describe a circular orbit provided that g′(z0) = 0.

Paper 2, Section I

9D Classical Dynamics

Given the form

T =
1

2
Tij q̇i q̇j , V =

1

2
Vij qi qj ,

for the kinetic energy T and potential energy V of a mechanical system, deduce Lagrange’s

equations of motion.

A light elastic string of length 4b, fixed at both ends, has three particles, each of

mass m, attached at distances b, 2b, 3b from one end. Gravity can be neglected. The

particles vibrate with small oscillations transversely to the string, the tension S in the

string providing the restoring force. Take the displacements of the particles, qi, i = 1, 2, 3,

to be the generalized coordinates. Take units such that m = 1, S/b = 1 and show that

V =
1

2

[
q1

2 + (q1 − q2)
2 + (q2 − q3)

2 + q3
2
]
.

Find the normal–mode frequencies for this system.
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Paper 3, Section I

9D Classical Dynamics
Euler’s equations for the angular velocity ω = (ω1, ω2, ω3) of a rigid body, viewed

in the body frame, are

I1
dω1

dt
= (I2 − I3)ω2 ω3

and cyclic permutations, where the principal moments of inertia are assumed to obey
I1 < I2 < I3.

Write down two quadratic first integrals of the motion.

There is a family of solutions ω(t), unique up to time–translations t → (t − t0),
which obey the boundary conditions ω → (0,Ω, 0) as t → −∞ and ω → (0,−Ω, 0) as
t → ∞ , for a given positive constant Ω. Show that, for such a solution, one has

L2 = 2EI2 ,

where L is the angular momentum and E is the kinetic energy.

By eliminating ω1 and ω3 in favour of ω2, or otherwise, show that, in this case, the
second Euler equation reduces to

ds

dτ
= 1− s2 ,

where s = ω2/Ω and τ = Ωt
[
(I1 − I2)(I2 − I3)/I1I3

]1/2
. Find the general solution s(τ).

[You are not expected to calculate ω1(t) or ω3(t).]
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Paper 4, Section I

9D Classical Dynamics

A system with one degree of freedom has Lagrangian L(q, q̇). Define the canonical

momentum p and the energy E. Show that E is constant along any classical path.

Consider a classical path qc(t) with the boundary–value data

qc(0) = qI , qc(T ) = qF , T > 0 .

Define the action Sc(qI , qF , T ) of the path. Show that the total derivative dSc/dT along

the classical path obeys
dSc

dT
= L .

Using Lagrange’s equations, or otherwise, deduce that

∂Sc

∂qF
= pF ,

∂Sc

∂T
= −E ,

where pF is the final momentum.

Paper 2, Section II

15D Classical Dynamics

An axially–symmetric top of mass m is free to rotate about a fixed point O on its

axis. The principal moments of inertia about O are A,A,C, and the centre of gravity G

is at a distance ℓ from O. Define Euler angles θ, φ and ψ which specify the orientation

of the top, where θ is the inclination of OG to the upward vertical. Show that there are

three conserved quantities for the motion, and give their physical meaning.

Initially, the top is spinning with angular velocity n about OG, with G vertically

above O, before being disturbed slightly. Show that, in the subsequent motion, θ will

remain close to zero provided C2n2 > 4mgℓA, but that if C2n2 < 4mgℓA, then θ will

attain a maximum value given by

cos θ ≃ (C2n2/ 2mgℓA) − 1 .
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Paper 4, Section II

15D Classical Dynamics

A system is described by the Hamiltonian H(q, p). Define the Poisson bracket {f, g}
of two functions f(q, p, t), g(q, p, t), and show from Hamilton’s equations that

df

dt
= {f,H}+ ∂f

∂t
.

Consider the Hamiltonian

H =
1

2
(p2 + ω2q2) ,

and define

a = (p− iωq)/(2ω)1/2 , a∗ = (p + iωq)/(2ω)1/2 ,

where i =
√
−1. Evaluate {a, a} and {a, a∗}, and show that {a,H} = −iωa and

{a∗,H} = iωa∗. Show further that, when f(q, p, t) is regarded as a function of the

independent complex variables a, a∗ and of t, one has

df

dt
= iω

(
a∗

∂f

∂a∗
− a

∂f

∂a

)
+

∂f

∂t
.

Deduce that both log a∗ − iωt and log a+ iωt are constant during the motion.
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Paper 1, Section I

4H Coding and Cryptography
Explain what is meant by saying that a binary code C is a decodable code with

words Cj of length lj for 1 6 j 6 n. Prove the MacMillan inequality which states that,
for such a code,

n∑

j=1

2−lj 6 1 .

Paper 2, Section I

4H Coding and Cryptography
Describe the standard Hamming code of length 7, proving that it corrects a single

error. Find its weight enumeration polynomial.

Paper 3, Section I

4H Coding and Cryptography
What is a linear code? What is a parity check matrix for a linear code? What is

the minimum distance d(C) for a linear code C?

If C1 and C2 are linear codes having a certain relation (which you should specify),
define the bar product C1|C2. Show that

d(C1|C2) = min
{
2d(C1), d(C2)

}
.

If C1 has parity check matrix P1 and C2 has parity check matrix P2, find a parity
check matrix for C1|C2.

Paper 4, Section I

4H Coding and Cryptography
What is the discrete logarithm problem?

Describe the Diffie–Hellman key exchange system for two people. What is the
connection with the discrete logarithm problem? Why might one use this scheme rather
than just a public key system or a classical (pre-1960) coding system?

Extend the Diffie–Hellman system to n people using n(n− 1) transmitted numbers.

Part II, 2010 List of Questions



21

Paper 1, Section II

12H Coding and Cryptography
State and prove Shannon’s theorem for the capacity of a noisy memoryless binary

symmetric channel, defining the terms you use.

[You may make use of any form of Stirling’s formula and any standard theorems from
probability, provided that you state them exactly.]

Paper 2, Section II

12H Coding and Cryptography
The Van der Monde matrix V (x 0, x 1, . . . , x r−1) is the r × r matrix with (i, j)th

entry x j−1
i−1 . Find an expression for detV (x 0, x 1, . . . , x r−1) as a product. Explain why

this expression holds if we work modulo p a prime.

Show that detV (x 0, x 1, . . . , x r−1) ≡ 0 modulo p if r > p, and that there exist
x0, . . . , xp−1 such that detV (x 0, x 1, . . . , x p−1) 6≡ 0 . By using Wilson’s theorem, or
otherwise, find the possible values of detV (x 0, x 1, . . . , x p−1) modulo p .

The Dark Lord Y’Trinti has acquired the services of the dwarf Trigon who can
engrave pairs of very large integers on very small rings. The Dark Lord wishes Trigon
to engrave n rings in such a way that anyone who acquires r of the rings and knows the
Prime Perilous p can deduce the Integer N of Power, but owning r − 1 rings will give no
information whatsoever. The integers N and p are very large and p > N . Advise the Dark
Lord.

For reasons to be explained in the prequel, Trigon engraves an (n + 1)st ring with
random integers. A band of heroes (who know the Prime Perilous and all the information
contained in this question) set out to recover the rings. What, if anything, can they
say, with very high probability, about the Integer of Power if they have r rings (possibly
including the fake)? What can they say if they have r+ 1 rings? What if they have r+ 2
rings?
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Paper 1, Section I

10D Cosmology

What is meant by the expression ‘Hubble time’?

For a(t) the scale factor of the universe and assuming a(0) = 0 and a(t0) = 1,

where t0 is the time now, obtain a formula for the size of the particle horizon R0 of the

universe.

Taking

a(t) = (t/t0)
α ,

show that R0 is finite for certain values of α. What might be the physically relevant values

of α? Show that the age of the universe is less than the Hubble time for these values of α.

Paper 2, Section I

10D Cosmology

The number density n = N/V for a photon gas in equilibrium is given by

n =
8π

c3

∫ ∞

0

ν 2

ehν/kT − 1
dν ,

where ν is the photon frequency. By letting x = hν/kT , show that

n = αT 3 ,

where α is a constant which need not be evaluated.

The photon entropy density is given by

s = β T 3 ,

where β is a constant. By considering the entropy, explain why a photon gas cools as the

universe expands.
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Paper 3, Section I

10D Cosmology

Consider a homogenous and isotropic universe with mass density ρ(t), pressure P (t)

and scale factor a(t). As the universe expands its energy changes according to the relation

dE = −PdV . Use this to derive the fluid equation

ρ̇ = −3
ȧ

a

(
ρ +

P

c 2

)
.

Use conservation of energy applied to a test particle at the boundary of a spherical

fluid element to derive the Friedmann equation

(
ȧ

a

)2

=
8π

3
Gρ − k

a2
c2 ,

where k is a constant. State any assumption you have made. Briefly state the significance

of k.

Paper 4, Section I

10D Cosmology

The linearised equation for the growth of density perturbations, δk, in an isotropic

and homogenous universe is

δ̈k + 2
ȧ

a
δ̇k +

(
cs
2 k2

a 2
− 4π Gρ

)
δk = 0 ,

where ρ is the density of matter, cs the sound speed, cs
2 = dP/dρ , and k is the comoving

wavevector and a(t) is the scale factor of the universe.

What is the Jean’s length? Discuss its significance for the growth of perturbations.

Consider a universe filled with pressure-free matter with a(t) = (t/t 0)
2/3. Compute

the resulting equation for the growth of density perturbations. Show that your equation

has growing and decaying modes and comment briefly on the significance of this fact.
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Paper 1, Section II

15D Cosmology

A star has pressure P (r) and mass density ρ(r), where r is the distance from the

centre of the star. These quantities are related by the pressure support equation

P ′ = − Gmρ

r 2
,

where P ′ = dP/dr and m(r) is the mass within radius r. Use this to derive the virial

theorem

Egrav = −3 〈P 〉V ,

where Egrav is the total gravitational potential energy and 〈P 〉 the average pressure.

The total kinetic energy of a spherically symmetric star is related to 〈P 〉 by

Ekin = α 〈P 〉V ,

where α is a constant. Use the virial theorem to determine the condition on α for

gravitational binding. By considering the relation between pressure and ‘internal energy’

U for an ideal gas, determine α for the cases of a) an ideal gas of non-relativistic particles,

b) an ideal gas of ultra-relativistic particles.

Why does your result imply a maximum mass for any star? Briefly explain what is

meant by the Chandrasekhar limit.

A white dwarf is in orbit with a companion star. It slowly accretes matter from the

other star until its mass exceeds the Chandrasekhar limit. Briefly explain its subsequent

evolution.
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Paper 3, Section II

15D Cosmology

The number density for particles in thermal equilibrium, neglecting quantum effects,

is

n = gs
4π

h3

∫
p2 dp exp(−(E(p) − µ)/kT ) ,

where gs is the number of degrees of freedom for the particle with energy E(p) and µ is

its chemical potential. Evaluate n for a non-relativistic particle.

Thermal equilibrium between two species of non-relativistic particles is maintained

by the reaction

a+ α ↔ b+ β ,

where α and β are massless particles. Evaluate the ratio of number densities na/nb given

that their respective masses are ma and mb and chemical potentials are µa and µb.

Explain how a reaction like the one above is relevant to the determination of the

neutron to proton ratio in the early universe. Why does this ratio not fall rapidly to zero

as the universe cools?

Explain briefly the process of primordial nucleosynthesis by which neutrons are

converted into stable helium nuclei. Letting

YHe = ρHe/ρ

be the fraction of the universe’s helium, compute YHe as a function of the ratio r = nn/np

at the time of nucleosynthesis.
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Paper 1, Section II

25H Differential Geometry
(i) State the definition of smooth manifold with boundary and define the notion

of boundary. Show that the boundary ∂X is a manifold (without boundary) with
dim ∂X = dim X − 1 .

(ii) Let 0 < a < 1 and let x1 , x2 , x3 , x4 denote Euclidean coordinates on R4.
Show that the set

X = {x 2
1 +x 2

2 +x 2
3 −x 2

4 6 a} ∩ {x 2
1 +x 2

2 +x 2
3 +x 2

4 = 1} ∩ {x 2
1 +2x 2

2 +x 2
3 +x 2

4 = 3/2}

is a manifold with boundary and compute its dimension. You may appeal to standard
results concerning regular values of smooth functions.

(iii) Determine if the following statements are true or false, giving reasons:

a. If X and Y are manifolds, f : X → Y smooth and Z ⊂ Y a submanifold of
codimension r such that f is not transversal to Z, then f−1(Z) is not a submanifold
of codimension r in X.

b. If X and Y are manifolds and f : X → Y is smooth, then the set of regular values
of f is open in Y .

c. If X and Y are manifolds and f : X → Y is smooth then the set of critical points
is of measure 0 in X.

Paper 2, Section II

25H Differential Geometry
(i) State and prove the isoperimetric inequality for plane curves. You may appeal

to Wirtinger’s inequality as long as you state it precisely.

(ii) State Fenchel’s theorem for curves in space.

(iii) Let α : I → R2 be a closed regular plane curve bounding a region K. Suppose
K ⊃ [ p1, p1 + d1] × [ p2, p2 + d2] , for d1 > 0 , d2 > 0 , i.e. K contains a rectangle of
dimensions d1 , d2 . Let k(s) denote the signed curvature of α with respect to the inward
pointing normal, where α is parametrised anticlockwise. Show that there exists an s0 ∈ I
such that k(s0) 6

√
π/(d1d2) .
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Paper 3, Section II

24H Differential Geometry
(i) State and prove the Theorema Egregium.

(ii) Define the notions principal curvatures, principal directions and umbilical point.

(iii) Let S ⊂ R3 be a connected compact regular surface (without boundary), and
let D ⊂ S be a dense subset of S with the following property. For all p ∈ D, there exists
an open neighbourhood Up of p in S such that for all θ ∈ [ 0, 2π), ψp,θ(Up) = Up , where
ψp,θ : R3 → R3 denotes rotation by θ around the line through p perpendicular to Tp S .
Show that S is in fact a sphere.

Paper 4, Section II

24H Differential Geometry
(i) Let S ⊂ R3 be a regular surface. Define the notions exponential map, geodesic

polar coordinates, geodesic circles.

(ii) State and prove Gauss’ lemma.

(iii) Let S be a regular surface. For fixed r > 0, and points p, q in S, let Sr(p),
Sr(q) denote the geodesic circles around p, q, respectively, of radius r. Show the following
statement: for each p ∈ S , there exists an r = r(p) > 0 and a neighborhood Up containing
p such that for all q ∈ Up , the sets Sr(p) and Sr(q) are smooth 1-dimensional manifolds
which intersect transversally. What is the cardinality mod 2 of Sr(p) ∩ Sr(q)?
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Paper 1, Section I

7D Dynamical Systems

Consider the 2-dimensional flow

ẋ = −µx+ y , ẏ =
x2

1 + x2
− νy ,

where x(t) and y(t) are non-negative, the parameters µ and ν are strictly positive and

µ 6= ν. Sketch the nullclines in the x, y plane. Deduce that for µ < µc (where µc is to be

determined) there are three fixed points. Find them and determine their type.

Sketch the phase portrait for µ < µc and identify, qualitatively on your sketch,

the stable and unstable manifolds of the saddle point. What is the final outcome of this

system?

Paper 2, Section I

7D Dynamical Systems

Consider the 2-dimensional flow

ẋ = µ

(
1

3
x3 − x

)
+ y , ẏ = −x ,

where the parameter µ > 0. Using Lyapunov’s approach, discuss the stability of the fixed

point and its domain of attraction. Relevant definitions or theorems that you use should

be stated carefully, but proofs are not required.

Paper 3, Section I

7D Dynamical Systems

Let I = [ 0, 1). The sawtooth (Bernoulli shift) map F : I → I is defined by

F (x) = 2x [ mod 1 ] .

Describe the effect of F using binary notation. Show that F is continuous on I except at

x = 1
2 . Show also that F has N -periodic points for all N > 2 . Are they stable?

Explain why F is chaotic, using Glendinning’s definition.
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Paper 4, Section I

7D Dynamical Systems

Consider the 2-dimensional flow

ẋ = y +
1

4
x

(
1− 2x2 − 2y2

)
, ẏ = −x+

1

2
y
(
1− x2 − y2

)
.

Use the Poincaré–Bendixson theorem, which should be stated carefully, to obtain a domain

D in the xy-plane, within which there is at least one periodic orbit.

Paper 3, Section II

14D Dynamical Systems

Describe informally the concepts of extended stable manifold theory. Illustrate your

discussion by considering the 2-dimensional flow

ẋ = µx+ xy − x3 , ẏ = −y + y2 − x2 ,

where µ is a parameter with |µ| ≪ 1, in a neighbourhood of the origin. Determine the

nature of the bifurcation.

Paper 4, Section II

14D Dynamical Systems

Let I = [ 0, 1 ] and consider continuous maps F : I → I. Give an informal outline

description of the two different bifurcations of fixed points of F that can occur.

Illustrate your discussion by considering in detail the logistic map

F (x) = µx (1− x) ,

for µ ∈ (0, 1 +
√
6 ] .

Describe qualitatively what happens for µ ∈ (1 +
√
6, 4].

[You may assume without proof that

x− F 2(x) = x (µx− µ+ 1) (µ2x2 − µ(µ+ 1)x+ µ+ 1 ) . ]
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Paper 1, Section II

35B Electrodynamics

The vector potential Aµ is determined by a current density distribution jµ in the

gauge ∂µA
µ = 0 by

�Aµ = −µ 0 j
µ , � = − ∂2

∂t2
+∇2 ,

in units where c = 1.

Describe how to justify the result

Aµ(x, t) =
µ0

4π

∫
d 3x′

jµ(x′, t′)
|x− x′| , t′ = t− |x− x′| .

A plane square loop of thin wire, edge lengths l, has its centre at the origin and lies

in the (x, y) plane. For t < 0, no current is flowing in the loop, but at t = 0 a constant

current I is turned on.

Find the vector potential at the point (0, 0, z) as a function of time due to a single

edge of the loop.

What is the electric field due to the entire loop at (0, 0, z) as a function of time?

Give a careful justification of your answer.
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Paper 3, Section II

36B Electrodynamics

A particle of rest-mass m, electric charge q, is moving relativistically along the path

xµ(s) where s parametrises the path.

Write down an action for which the extremum determines the particle’s equation of

motion in an electromagnetic field given by the potential Aµ(x).

Use your action to derive the particle’s equation of motion in a form where s is the

proper time.

Suppose that the electric and magnetic fields are given by

E = (0, 0, E) ,

B = (0, B, 0) .

where E and B are constants and B > E > 0.

Find xµ(s) given that the particle starts at rest at the origin when s = 0.

Describe qualitatively the motion of the particle.

Paper 4, Section II

35B Electrodynamics

In a superconductor the number density of charge carriers of charge q is ns . Suppose

that there is a time-independent magnetic field described by the three-vector potential A.

Derive an expression for the superconducting current.

Explain how your answer is gauge invariant.

Suppose that for z < 0 there is a constant magnetic field B0 in a vacuum and, for

z > 0, there is a uniform superconductor. Derive the magnetic field for z > 0.
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Paper 1, Section II

37A Fluid Dynamics II
Write down the Navier-Stokes equation for the velocity u(x, t) of an incompressible

viscous fluid of density ρ and kinematic viscosity ν. Cast the equation into dimensionless
form. Define rectilinear flow, and explain why the spatial form of any steady rectilinear
flow is independent of the Reynolds number.

(i) Such a fluid is contained between two infinitely long plates at y = 0, y = a. The
lower plate is at rest while the upper plate moves at constant speed U in the x direction.
There is an applied pressure gradient dp/dx = −Gρν in the x direction. Determine the
flow field.

(ii) Now there is no applied pressure gradient, but baffles are attached to the lower
plate at a distance L from each other (L ≫ a), lying between the plates so as to prevent
any net volume flux in the x direction. Assuming that far from the baffles the flow is
essentially rectilinear, determine the flow field and the pressure gradient in the fluid.

Paper 2, Section II

37A Fluid Dynamics II
What is lubrication theory? Explain the assumptions that go into the theory.

Viscous fluid with dynamic viscosity µ and density ρ is contained between two
flat plates, which approach each other at uniform speed V . The first is fixed at
y = 0, −L < x < L. The second has its ends at (−L, h0 −∆h− V t), (L, h0 +∆h− V t),
where ∆h ∼ h0 ≪ L. There is no flow in the z direction, and all variation in z may be
neglected. There is no applied pressure gradient in the x direction.

Assuming that V is so small that lubrication theory applies, derive an expression
for the horizontal volume flux Q(x) at t = 0 , in terms of the pressure gradient. Show
that mass conservation implies that dQ/dx = V , so that Q(L) −Q(−L) = 2V L. Derive
another relation between Q(L) and Q(−L) by setting the pressures at x = ±L to be equal,
and hence show that

Q (±L) = V L

(
∆h

h0
± 1

)
.

Show that lubrication theory applies if V ≪ µ/h0ρ.
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Paper 3, Section II

37A Fluid Dynamics II
The equation for the vorticity ω(x, y) in two-dimensional incompressible flow takes

the form
∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂y
= ν

(
∂2ω

∂x2
+
∂2ω

∂y2

)
,

where

u =
∂ψ

∂y
, v = − ∂ψ

∂x
and ω = −

(
∂2ψ

∂x2
+
∂2ψ

∂y2

)
,

and ψ(x, y) is the stream function.

Show that this equation has a time-dependent similarity solution of the form

ψ = CxH(t)−1φ(η) , ω = −CxH(t)−3φηη(η) for η = yH(t)−1 ,

if H(t) =
√
2Ct and φ satisfies the equation

3φηη + ηφηηη − φηφηη + φφηηη +
1

R
φηηηη = 0 , (∗)

and R = C/ν is the effective Reynolds number.

Show that this solution is appropriate for the problem of two-dimensional flow
between the rigid planes y = ±H(t), and determine the boundary conditions on φ in
that case.

Verify that (∗) has exact solutions, satisfying the boundary conditions, of the form

φ =
(−1)k

kπ
sin(kπη) − η , k = 1, 2, . . . ,

when R = k2π2/4. Sketch this solution when k is large, and discuss whether such solutions
are likely to be realised in practice.
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Paper 4, Section II

37A Fluid Dynamics II
An axisymmetric incompressible Stokes flow has the Stokes stream function Ψ(R, θ)

in spherical polar coordinates (R, θ, φ). Give expressions for the components uR, uθ of the
flow field in terms of Ψ. Show that the equation satisfied by Ψ is

D2(D2Ψ) = 0 , where D2 =
∂2

∂R2
+

sin θ

R2

∂

∂θ

(
1

sin θ

∂

∂θ

)
. (∗)

Fluid is contained between the two spheres R = a,R = b, with b ≫ a. The fluid velocity
vanishes on the outer sphere, while on the inner sphere uR = U cos θ, uθ = 0. It is assumed
that Stokes flow applies.

(i) Show that the Stokes stream function,

Ψ(R, θ) = a2U sin2 θ

(
A
( a

R

)
+B

(
R

a

)
+ C

(
R

a

)2

+D

(
R

a

)4
)

,

is the general solution of (∗) proportional to sin2 θ and write down the conditions on
A,B,C,D that allow all the boundary conditions to be satisfied.

(ii) Now let b → ∞, with |u| → 0 as R → ∞ . Show that A = B = 1/4 with
C = D = 0.

(iii) Show that when b/a is very large but finite, then the coefficients have the
approximate form

C ≈ − 3

8

a

b
, D ≈ 1

8

a3

b3
, A ≈ 1

4
− 3

16

a

b
, B ≈ 1

4
+

9

16

a

b
.
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Paper 1, Section I

8E Further Complex Methods
Let the complex-valued function f(z) be analytic in the neighbourhood of the point

z0 and let u(x, y) be the real part of f(z). Show that

f(z) = 2u

(
z + z̄0

2
,
z − z̄0
2i

)
− f(z0) , z = x+ iy .

Hence find the analytic function whose real part is

e−y[x cos x− y sinx ] .

Paper 2, Section I

8E Further Complex Methods
Define

F±(x) = lim
ǫ→0

1

2πi

∫ ∞

−∞

f(t)

t− (x± iǫ)
dt , x ∈ R .

Using the fact that

F±(x) = ± f(x)

2
+

1

2πi
P

∫ ∞

−∞

f(t)

t− x
dt , x ∈ R ,

where P denotes the Cauchy principal value, find two complex-valued functions F+(z)
and F−(z) which satisfy the following conditions

1. F+(z) and F−(z) are analytic for Im z > 0 and Im z < 0 respectively, z = x+ iy ;

2. F+(x)− F−(x) =
sinx

x
, x ∈ R ;

3. F±(z) = O
(
1
z

)
, z → ∞ , Im z 6= 0 .

Part II, 2010 List of Questions [TURN OVER



36

Paper 3, Section I

8E Further Complex Methods
Let Γ(z) and ζ(z) denote the gamma and the zeta functions respectively, namely

Γ(z) =

∫ ∞

0
x z−1 e−x dx , Re z > 0 ,

ζ(z) =
∞∑

m=1

1

mz
, Re z > 1 .

By employing a series expansion of (1− e−x)−2, prove the following identity

∫ ∞

0

xz

(ex − 1)2
dx = Γ(z + 1)

[
ζ(z)− ζ(z + 1)

]
, Re z > 1 .

Paper 4, Section I

8E Further Complex Methods
The hypergeometric function F (a, b; c; z) can be expressed in the form

F (a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
tb−1(1− t)c−b−1 (1− tz)−a dt ,

for appropriate restrictions on c, b, z.

Express the following integral in terms of a combination of hypergeometric functions

I(u,A) =

∫ π
2

−π
2

eit(u+1)

eit + iA
dt , |A| > 1 .

[You may use without proof that Γ(z + 1) = zΓ(z) .]
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Paper 1, Section II

14E Further Complex Methods
Consider the partial differential equation for u(x, t),

∂u

∂t
=

∂2u

∂x2
+ β

∂u

∂x
, β > 0 , 0 < x < ∞ , t > 0 , (∗)

where u(x, t) is required to vanish rapidly for all t as x → ∞.

(i) Verify that the PDE (∗) can be written in the following form

(
e−ikx+(k2−iβk)tu

)
t
=

(
e−ikx+(k2−iβk)t

[
(ik + β)u+ ux

])
x
.

(ii) Define û(k, t) =
∫∞
0 e−ikx u(x, t) dx, which is analytic for Im k 6 0. Determine

û(k, t) in terms of û(k, 0) and also the functions f0, f1 defined by

f0(ω, t) =

∫ t

0
e−ω(t−t′) u(0, t′) dt′ , f1(ω, t) =

∫ t

0
e−ω(t−t′) ux(0, t

′) dt′ .

(iii) Show that in the inverse transform expression for u(x, t) the integrals involving
f0, f1 may be transformed to the contour

L =
{
k ∈ C : Re (k2 − iβk) = 0, Im k > β

}
.

By considering û(k′, t) where k′ = −k + iβ and k ∈ L, show that it is possible to obtain
an equation which allows f1 to be eliminated.

(iv) Obtain an integral expression for the solution of (∗) subject to the the initial-
boundary value conditions of given u(x, 0), u(0, t).

[You need to show that ∫

L
eikx û(k′, t) dk = 0 , x > 0 ,

by an appropriate closure of the contour which should be justified.]
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Paper 2, Section II

14E Further Complex Methods
Let

I(z) = i

∮

C

uz−1

u2 − 4u+ 1
du ,

where C is a closed anti-clockwise contour which consists of the unit circle joined to a loop
around a branch cut along the negative axis between −1 and 0. Show that

I(z) = F (z) +G(z) ,

where

F (z) = 2 sin(πz)

∫ 1

0

xz−1

x2 + 4x+ 1
dx , Re z > 0 ,

and

G(z) =
1

2

∫ π

−π

ei(z− 1) θ

1 + 2 sin2 θ
2

dθ , z ∈ C .

Evaluate I(z) using Cauchy’s theorem. Explain how this may be used to obtain an
analytic continuation of F (z) valid for all z ∈ C.
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Paper 1, Section II

18H Galois Theory
Let Fq be a finite field with q elements and Fq its algebraic closure.

(i) Give a non-zero polynomial P (X) in Fq [X1, . . . ,Xn] such that

P (α1, . . . , αn) = 0 for all α1, . . . , αn ∈ Fq .

(ii) Show that every irreducible polynomial P (X) of degree n > 0 in Fq[X] can be

factored in Fq[X] as
(
X−α

)(
X−α q

)(
X−α q 2) · · ·

(
X−α q n−1)

for some α ∈ Fq . What
is the splitting field and the Galois group of P over Fq?

(iii) Let n be a positive integer and Φn(X) be the n-th cyclotomic polynomial.
Recall that if K is a field of characteristic prime to n , then the set of all roots of Φn in K
is precisely the set of all primitive n-th roots of unity in K . Using this fact, prove that if
p is a prime number not dividing n , then p divides Φn(x) in Z for some x ∈ Z if and only
if p = an+ 1 for some integer a . Write down Φn explicitly for three different values of n
larger than 2, and give an example of x and p as above for each n .

Paper 2, Section II

18H Galois Theory
(1) Let F = Q( 3

√
5 ,

√
5 , i). What is the degree of F/Q? Justify your answer.

(2) Let F be a splitting field of X4 − 5 over Q . Determine the Galois group
Gal(F/Q). Determine all the subextensions of F/Q , expressing each in the form Q(x) or
Q(x, y) for some x, y ∈ F .

[Hint: If an automorphism ρ of a field X has order 2 , then for every x ∈ X the element
x+ ρ(x) is fixed by ρ .]
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Paper 3, Section II

18H Galois Theory
Let K be a field of characteristic 0 . It is known that soluble extensions of K

are contained in a succession of cyclotomic and Kummer extensions. We will refine this
statement.

Let n be a positive integer. The n-th cyclotomic field over a field K is denoted by K(µn).
Let ζn be a primitive n-th root of unity in K(µn).

(i) Write ζ 3 ∈ Q(µ3), ζ 5 ∈ Q(µ5) in terms of radicals. Write Q(µ3)/Q and Q(µ5)/Q
as a succession of Kummer extensions.

(ii) Let n > 1, and F := K(ζ 1 , ζ 2 , . . . , ζn−1). Show that F (µn)/F can be written
as a succession of Kummer extensions, using the structure theorem of finite abelian groups
(in other words, roots of unity can be written in terms of radicals). Show that every soluble
extension of K is contained in a succession of Kummer extensions.

Paper 4, Section II

18H Galois Theory
Let K be a field of characteristic 6= 2, 3 , and assume that K contains a primitive

cubic root of unity ζ. Let P ∈ K[X] be an irreducible cubic polynomial, and let α, β, γ
be its roots in the splitting field F of P over K . Recall that the Lagrange resolvent x of
P is defined as x = α+ ζβ + ζ 2 γ .

(i) List the possibilities for the group Gal(F/K), and write out the set
{σ(x) | σ ∈ Gal(F/K)} in each case.

(ii) Let y = α + ζγ + ζ 2β . Explain why x 3, y 3 must be roots of a quadratic
polynomial in K[X] . Compute this polynomial for P = X 3 + bX + c , and deduce the
criterion to identify Gal(F/K) through the element −4b 3 − 27c 2 of K .
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Paper 1, Section II

36B General Relativity

Consider a spacetime M with a metric gab(x
c) and a corresponding connection Γa

bc.

Write down the differential equation satisfied by a geodesic xa(λ), where λ is an affine

parameter.

Show how the requirement that

δ

∫
gab(x

c)
d

dλ
xa(λ)

d

dλ
xb(λ) dλ = 0 ,

where δ denotes variation of the path, gives the geodesic equation and determines Γa
bc.

Show that the timelike geodesics for the 2–manifold with line element

ds2 = t−2 (dx2 − dt2)

are given by

t2 = x2 + αx+ β ,

where α and β are constants.
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Paper 2, Section II

36B General Relativity

A vector field ka which satisfies

ka;b + kb;a = 0

is called a Killing vector field. Prove that ka is a Killing vector field if and only if

kcgab,c + kc,b gac + kc,a gbc = 0 .

Prove also that if V a satisfies

V a
;b V

b = 0 ,

then

(V aka),b V
b = 0 (∗)

for any Killing vector field ka.

In the two–dimensional space–time with coordinates xa = (u, v) and line element

ds2 = −du2 + u2dv2 ,

verify that (0, 1), e−v(1, u−1) and ev(−1, u−1) are Killing vector fields. Show, by using (∗)
with V a the tangent vector to a geodesic, that geodesics in this space–time are given by

αev + βe−v = 2 γu−1 ,

where α, β and γ are arbitrary real constants.

Part II, 2010 List of Questions



43

Paper 4, Section II

36B General Relativity

The Schwarzschild line element is given by

ds2 = −Fdt2 + F −1dr2 + r2 (dθ2 + sin2 θ dφ2) ,

where F = 1− rs/r and rs is the Schwarzschild radius. Obtain the equation of geodesic

motion of photons moving in the equatorial plane, θ = π/2, in the form

(dr
dτ

)2
= E2 − h2F

r2
,

where τ is proper time, and E and h are constants whose physical significance should be

indicated briefly.

Defining u = 1/r show that light rays are determined by

(du
dφ

)2
=

(1
b

)2
− u2 + rs u

3 ,

where b = h/E and rs may be taken to be small. Show that, to zeroth order in rs, a light

ray is a straight line passing at distance b from the origin. Show that, to first order in rs,

the light ray is deflected through an angle 2rs/b. Comment briefly on some observational

evidence for the result.
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Paper 1, Section I

3F Geometry of Group Actions

Explain what it means to say that G is a crystallographic group of isometries of the

Euclidean plane and that G is its point group. Prove the crystallographic restriction: a

rotation in such a point group G must have order 1, 2, 3, 4 or 6.

Paper 2, Section I

3F Geometry of Group Actions

Show that a map T : R2 → R2 is an isometry for the Euclidean metric on the plane

R2 if and only if there is a vector v ∈ R2 and an orthogonal linear map B ∈ O(2) with

T (x) = B(x) + v for all x ∈ R2 .

When T is an isometry with detB = −1, show that T is either a reflection or a glide

reflection.

Paper 3, Section I

3F Geometry of Group Actions

Let U be a “triangular” region in the unit disc D bounded by three hyperbolic

geodesics γ1, γ2, γ3 that do not meet in D nor on its boundary. Let Jk be inversion in γk
and set

A = J2 ◦ J1 ; B = J3 ◦ J2 .
Let G be the group generated by the Möbius transformations A and B. Describe briefly

a fundamental set for the group G acting on D.

Prove that G is a free group on the two generators A and B. Describe the quotient

surface D/G.

Part II, 2010 List of Questions



45

Paper 4, Section I

3F Geometry of Group Actions

Define loxodromic transformations and explain how to determine when a Möbius

transformation

T : z 7→ az + b

cz + d
with ad− bc = 1

is loxodromic.

Show that any Möbius transformation that maps a disc ∆ onto itself cannot be

loxodromic.

Paper 1, Section II

11F Geometry of Group Actions

For which circles Γ does inversion in Γ interchange 0 and ∞?

Let Γ be a circle that lies entirely within the unit disc D = {z ∈ C : |z| < 1}. Let K
be inversion in this circle Γ, let J be inversion in the unit circle, and let T be the Möbius

transformation K ◦ J . Show that, if z0 is a fixed point of T , then

J(z0) = K(z0)

and this point is another fixed point of T .

By applying a suitable isometry of the hyperbolic plane D, or otherwise, show that

Γ is the set of points at a fixed hyperbolic distance from some point of D.

Paper 4, Section II

12F Geometry of Group Actions

Explain briefly how Möbius transformations of the Riemann sphere are extended to

give isometries of the unit ball B3 ⊂ R3 for the hyperbolic metric.

Which Möbius transformations have extensions that fix the origin in B3?

For which Möbius transformations T can we find a hyperbolic line in B3 that T maps

onto itself? For which of these Möbius transformations is there only one such hyperbolic

line?

Part II, 2010 List of Questions [TURN OVER



46

Paper 1, Section II

17F Graph Theory

(a) Define the Ramsey number R(s). Show that for all integers s > 2 the Ramsey

number R(s) exists and that R(s) 6 4s.

(b) For any graph G, let R(G) denote the least positive integer n such that in any

red-blue colouring of the edges of the complete graph Kn there must be a monochromatic

copy of G.

(i) How do we know that R(G) exists for every graph G?

(ii) Let s be a positive integer. Show that, whenever the edge of K2s are red-blue

coloured, there must be a monochromatic copy of the complete bipartite graph

K1,s.

(iii) Suppose s is odd. By exhibiting a suitable colouring of K2s−1, show that

R(K1,s) = 2s .

(iv) Suppose instead s is even. What is R(K1,s)? Justify your answer.
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Paper 2, Section II

17F Graph Theory

Let G be a bipartite graph with vertex classes X and Y . What does it mean to say

that G contains a matching from X to Y ?

State and prove Hall’s Marriage Theorem, giving a necessary and sufficient condition

for G to contain a matching from X to Y .

Now assume that G does contain a matching (from X to Y ). For a subset A ⊂ X,

Γ(A) denotes the set of vertices adjacent to some vertex in A.

(i) Suppose |Γ(A)| > |A| for every A ⊂ X with A 6= ∅ , X. Show that every edge of G

is contained in a matching.

(ii) Suppose that every edge of G is contained in a matching and that G is connected.

Show that |Γ(A)| > |A| for every A ⊂ X with A 6= ∅ , X.

(iii) For each n > 2 , give an example of G with |X| = n such that every edge is contained

in a matching but |Γ(A)| = |A| for some A ⊂ X with A 6= ∅ , X.

(iv) Suppose that every edge of G is contained in a matching. Must every pair of

independent edges in G be contained in a matching? Give a proof or counterexample

as appropriate.

[No form of Menger’s Theorem or of the Max-Flow-Min-Cut Theorem may be assumed

without proof.]

Paper 3, Section II

17F Graph Theory

Let G be a graph of order n . Show that G must contain an independent set of⌈∑

v∈G

1

d(v) + 1

⌉
vertices (where ⌈x⌉ denotes the least integer > x).

[Hint: take a random ordering of the vertices of G, and consider the set of those vertices

which are adjacent to no earlier vertex in the ordering.]

Fix an integer m < n with m dividing n , and suppose that e(G) = m

(
n/m

2

)
.

(i) Deduce that G must contain an independent set of m vertices.

(ii) Must G contain an independent set of m+ 1 vertices?
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Paper 4, Section II

17F Graph Theory

State Euler’s formula relating the number of vertices, edges and faces in a drawing

of a connected planar graph. Deduce that every planar graph has chromatic number at

most 5.

Show also that any triangle-free planar graph has chromatic number at most 4.

Suppose G is a planar graph which is minimal 5-chromatic; that is to say, χ(G) = 5

but if H is a subgraph of G with H 6= G then χ(H) < 5 . Prove that δ(G) > 5 . Does

this remain true if we drop the assumption that G is planar? Justify your answer.

[The Four Colour Theorem may not be assumed.]
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Paper 1, Section II

32E Integrable Systems
Define a Poisson structure on an open set U ⊂ Rn in terms of an anti-symmetric

matrix ωab : U −→ R , where a, b = 1, · · · , n. By considering the Poisson brackets of the
coordinate functions xa show that

n∑

d=1

(
ωdc ∂ ωab

∂ xd
+ ωdb ∂ ωca

∂ xd
+ ωda ∂ ωbc

∂ xd

)
= 0 .

Now set n = 3 and consider ωab =
∑3

c=1 ε
abc xc, where εabc is the totally

antisymmetric symbol on R3 with ε123 = 1. Find a non–constant function f : R3 −→ R
such that

{f, xa} = 0 , a = 1, 2, 3 .

Consider the Hamiltonian

H(x1, x2, x3) =
1

2

3∑

a,b=1

Mab xa xb ,

where Mab is a constant symmetric matrix and show that the Hamilton equations of
motion with ωab =

∑3
c=1 ε

abc xc are of the form

ẋa =
3∑

b, c=1

Qabc xb xc ,

where the constants Qabc should be determined in terms of Mab.
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Paper 2, Section II

32E Integrable Systems
Consider the Gelfand–Levitan–Marchenko (GLM) integral equation

K(x, y) + F (x+ y) +

∫ ∞

x
K(x, z)F (z + y) dz = 0 ,

with F (x) =
∑N

1 βn e
−cn x, where c1, . . . , cN are positive constants and β1, . . . , βN are

constants. Consider separable solutions of the form

K(x, y) =

N∑

n=1

Kn(x) e
−cn y ,

and reduce the GLM equation to a linear system

N∑

m=1

Anm(x)Km(x) = Bn(x) ,

where the matrix Anm(x) and the vector Bn(x) should be determined.

How is K related to solutions of the KdV equation?

Set N = 1, c1 = c, β1 = β exp (8c 3t) where c, β are constants. Show that the
corresponding one–soliton solution of the KdV equation is given by

u(x, t) = − 4β1c e
−2 cx

(1 + (β1/2c) e−2 cx)2
.

[You may use any facts about the Inverse Scattering Transform without proof.]
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Paper 3, Section II

32E Integrable Systems
Consider a vector field

V = αx
∂

∂x
+ β t

∂

∂t
+ γ v

∂

∂v
,

on R3, where α, β and γ are constants. Find the one-parameter group of transformations
generated by this vector field.

Find the values of the constants (α, β, γ) such that V generates a Lie point symmetry
of the modified KdV equation (mKdV)

vt − 6 v2 vx + vxxx = 0 , where v = v(x, t) .

Show that the function u = u(x, t) given by u = v2 + vx satisfies the KdV equation
and find a Lie point symmetry of KdV corresponding to the Lie point symmetry of mKdV
which you have determined from V .
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Paper 1, Section II

22H Linear Analysis

a) State and prove the Banach–Steinhaus Theorem.

[You may use the Baire Category Theorem without proving it.]

b) Let X be a (complex) normed space and S ⊂ X. Prove that if {f(x) : x ∈ S} is
a bounded set in C for every linear functional f ∈ X∗ then there exists K > 0 such that
‖x‖ 6 K for all x ∈ S.

[You may use here the following consequence of the Hahn–Banach Theorem without
proving it: for a given x ∈ X, there exists f ∈ X∗ with ‖f‖ = 1 and |f(x)| = ‖x‖.]

c) Conclude that if two norms ‖.‖1 and ‖.‖2 on a (complex) vector space V are not
equivalent, there exists a linear functional f : V → C which is continuous with respect to
one of the two norms, and discontinuous with respect to the other.

Paper 2, Section II

22H Linear Analysis
For a sequence x = (x1, x2, . . . ) with xj ∈ C for all j > 1, let

‖x‖∞ := sup
j>1

|xj |

and ℓ∞ = {x = (x1, x2, . . . ) : xj ∈ C for all j > 1 and ‖x‖∞ < ∞}.

a) Prove that ℓ∞ is a Banach space.

b) Define
c0 = {x = (x1, x2, . . . ) ∈ ℓ∞ : lim

j→∞
xj = 0}

and

ℓ1 =

{
x = (x1, x2, . . . ) : xj ∈ C for all j ∈ N and ‖x‖1 =

∞∑

ℓ=1

|xℓ| < ∞
}
.

Show that c0 is a closed subspace of ℓ∞. Show that c∗0 ≃ ℓ1.

[Hint: find an isometric isomorphism from ℓ1 to c∗0.]

c) Let

c00 = {x = (x1, x2, . . . ) ∈ ℓ∞ : xj = 0 for all j large enough}.

Is c00 a closed subspace of ℓ∞? If not, what is the closure of c00?
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Paper 3, Section II

21H Linear Analysis
State and prove the Stone-Weierstrass theorem for real-valued functions.

[You may use without proof the fact that the function s → |s| can be uniformly
approximated by polynomials on [−1, 1].]

Paper 4, Section II

22H Linear Analysis
Let X be a Banach space.

a) What does it mean for a bounded linear map T : X → X to be compact?

b) Let B(X) be the Banach space of all bounded linear maps S : X → X. Let
B0(X) be the subset of B(X) consisting of all compact operators. Show that B0(X) is a
closed subspace of B(X). Show that, if S ∈ B(X) and T ∈ B0(X), then ST, TS ∈ B0(X).

c) Let

X = ℓ2 =

{
x = (x1, x2, . . . ) : xj ∈ C and ‖x‖22 =

∞∑

j=1

|xj|2 < ∞
}
,

and T : X → X be defined by

(Tx)k =
xk+1

k + 1
.

Is T compact? What is the spectrum of T ? Explain your answers.
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Paper 1, Section II

16G Logic and Set Theory

Show that ℵ 2
α = ℵα for all α .

An infinite cardinal m is called regular if it cannot be written as a sum of fewer than

m cardinals each of which is smaller than m. Prove that ℵ 0 and ℵ1 are regular.

Is ℵ2 regular? Is ℵω regular? Justify your answers.

Paper 2, Section II

16G Logic and Set Theory

Let α be a non-zero ordinal. Prove that there exists a greatest ordinal β such that

ω β 6 α . Explain why there exists an ordinal γ with ω β + γ = α . Prove that γ is unique,

and that γ < α .

A non-zero ordinal α is called decomposable if it can be written as the sum of two

smaller non-zero ordinals. Deduce that if α is not a power of ω then α is decomposable.

Conversely, prove that if α is a power of ω then α is not decomposable.

[Hint: consider the cases α = ω β (β a successor) and α = ω β (β a limit) separately.]

Paper 3, Section II

16G Logic and Set Theory

Define the sets Vα , α ∈ ON . What is meant by the rank of a set?

Explain briefly why, for every α , there exists a set of rank α .

Let x be a transitive set of rank α . Show that x has an element of rank β for every

β < α .

For which α does there exist a finite set of rank α? For which α does there exist a

finite transitive set of rank α? Justify your answers.

[Standard properties of rank may be assumed.]
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Paper 4, Section II

16G Logic and Set Theory

State and prove the Completeness Theorem for Propositional Logic.

[You do not need to give definitions of the various terms involved. You may assume

that the set of primitive propositions is countable. You may also assume the Deduction

Theorem.]

Explain briefly how your proof should be modified if the set of primitive propositions

is allowed to be uncountable.
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Paper 1, Section I

6A Mathematical Biology
A delay model for a population Nt consists of

Nt+1 =
rNt

1 + bN 2
t−1

,

where t is discrete time, r > 1 and b > 0. Investigate the linear stability about the
positive steady state N∗. Show that r = 2 is a bifurcation value at which the steady state
bifurcates to a periodic solution of period 6.

Paper 2, Section I

6A Mathematical Biology
The population of a certain species subjected to a specific kind of predation is

modelled by the difference equation

ut+1 = a
ut

2

b2 + ut2
, a > 0 .

Determine the equilibria and show that if a2 > 4 b2 it is possible for the population to be
driven to extinction if it becomes less than a critical size which you should find. Explain
your reasoning by means of a cobweb diagram.
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Paper 3, Section I

6A Mathematical Biology
A population of aerobic bacteria swims in a laterally-infinite layer of fluid occupying

−∞ < x < ∞, −∞ < y < ∞, and −d/2 < z < d/2, with the top and bottom surfaces in
contact with air. Assuming that there is no fluid motion and that all physical quantities
depend only on z, the oxygen concentration c and bacterial concentration n obey the
coupled equations

∂c

∂t
= Dc

∂2c

∂z2
− kn ,

∂n

∂t
= Dn

∂2n

∂z2
− ∂

∂z

(
µn

∂c

∂z

)
.

Consider first the case in which there is no chemotaxis, so n has the spatially-uniform value
n̄. Find the steady-state oxygen concentration consistent with the boundary conditions
c (±d/2) = c0. Calculate the Fick’s law flux of oxygen into the layer and justify your
answer on physical grounds.

Now allowing chemotaxis and cellular diffusion, show that the equilibrium oxygen
concentration satisfies

d2c

dz2
− kn0

Dc
exp (µc/Dn) = 0 ,

where n0 is a suitable normalisation constant that need not be found.

Paper 4, Section I

6A Mathematical Biology
A concentration u(x, t) obeys the differential equation

∂u

∂t
= Duxx + f(u) ,

in the domain 0 6 x 6 L , with boundary conditions u(0, t) = u(L, t) = 0 and initial
condition u(x, 0) = u0(x), and where D is a positive constant. Assume f(0) = 0 and
f ′(0) > 0. Linearising the dynamics around u = 0, and representing u(x, t) as a suitable
Fourier expansion, show that the condition for the linear stability of u = 0 can be expressed
as the following condition on the domain length

L < π

[
D

f ′(0)

]1/2
.
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Paper 2, Section II

13A Mathematical Biology
The radially symmetric spread of an insect population density n(r, t) in the plane

is described by the equation

∂n

∂t
=

D0

r

∂

∂r

[
r

(
n

n0

)2 ∂n
∂r

]
. (∗)

Suppose Q insects are released at r = 0 at t = 0. We wish to find a similarity solution to
(∗) in the form

n(r, t) =
n0

λ2(t)
F

(
r

r0λ(t)

)
.

Show first that the PDE (∗) reduces to an ODE for F if λ(t) obeys the equation

λ5 dλ

dt
= C

D0

r 2
0

,

where C is an arbitrary constant (that may be set to unity), and then obtain λ(t) and F
such that F (0) = 1 and F (ξ) = 0 for ξ > 1. Determine r0 in terms of n0 and Q. Sketch
the function n(r, t) at various times to indicate its qualitative behaviour.
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Paper 3, Section II

13A Mathematical Biology
Consider an epidemic model in which S(x, t) is the local population density of

susceptibles and I(x, t) is the density of infectives

∂S

∂t
= − rIS ,

∂I

∂t
= D

∂ 2I

∂x 2
+ rIS − aI ,

where r, a, and D are positive. If S0 is a characteristic population value, show that the
rescalings I/S0 → I, S/S0 → S, (rS0/D)1/2 x → x, rS0t → t reduce this system to

∂S

∂t
= − IS ,

∂I

∂t
=

∂ 2I

∂x 2
+ IS − λI ,

where λ should be found.

Travelling wavefront solutions are of the form S(x, t) = S(z), I(x, t) = I(z), where
z = x − ct and c is the wave speed, and we seek solutions with boundary conditions
S(∞) = 1, S′(∞) = 0, I(∞) = I(−∞) = 0. Under the travelling-wave assumption reduce
the rescaled PDEs to ODEs, and show by linearisation around the leading edge of the
advancing front that the requirement that I be non-negative leads to the condition λ < 1
and hence the wave speed relation

c > 2(1 − λ)1/2 , λ < 1 .

Using the two ODEs you have obtained, show that the surviving susceptible
population fraction σ = S(−∞) after the passage of the front satisfies

σ − λ lnσ = 1 ,

and sketch σ as a function of λ.
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Paper 1, Section II

20G Number Fields

Suppose that m is a square-free positive integer, m > 5 , m 6≡ 1 (mod 4) . Show

that, if the class number of K = Q(
√−m ) is prime to 3 , then x3 = y2 +m has at most

two solutions in integers. Assume the m is even.

Paper 2, Section II

20G Number Fields

Calculate the class group of the field Q(
√
−14 ) .

Paper 4, Section II

20G Number Fields

Suppose that α is a zero of x 3−x+3 and that K = Q(α) . Show that [K : Q] = 3.

Show that OK , the ring of integers in K, is OK = Z [α] .

[You may quote any general theorem that you wish, provided that you state it clearly.

Note that the discriminant of x 3 + px+ q is −4 p3 − 27q2 .]
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Paper 1, Section I

1G Number Theory

(i) Let N be an integer > 2 . Define the addition and multiplication on the set of

congruence classes modulo N .

(ii) Let an integer M > 1 have expansion to the base 10 given by a s . . . a 0 . Prove

that 11 divides M if and only if
∑ s

i=0 (−1)ia i is divisible by 11.

Paper 2, Section I

1G Number Theory

Let p be an odd prime number. If n is an integer prime to p , define

(
n

p

)
.

(i) Prove that χ(n) =

(
n

p

)
defines a homomorphism from (Z/pZ)× to the group

{±1} . What is the value of χ(−1)?

(ii) If p ≡ 1 mod 4 , prove that

p−1∑

n=1

χ(n)n = 0 .

Paper 3, Section I

1G Number Theory

(i) Let M and N be positive integers, such that N is not a perfect square. If

M <
√
N , show that every solution of the equation

x 2 −Ny 2 = M

in positive integers x, y comes from some convergent of the continued fraction of
√
N .

(ii) Find a solution in positive integers x, y of

x 2 − 29y 2 = 5 .
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Paper 4, Section I

1G Number Theory

Let p be a prime number, and put

ak = kp , Nk = a p
k − 1 (k = 1, 2, ... ) .

Prove that ak has exact order p modulo Nk for all k > 1 , and deduce that Nk must be

divisible by a prime q with q ≡ 1 (mod p) . By making a suitable choice of k, prove that

there are infinitely many primes q with q ≡ 1 (mod p) .

Paper 3, Section II

11G Number Theory

State precisely the Miller-Rabin primality test.

(i) Let p be a prime > 5 , and define

N =
4p − 1

3
.

Prove that N is a composite odd integer, and that N is a pseudo-prime to the base 2 .

(ii) Let M be an odd integer greater than 1 such that M is a pseudo-prime to the

base 2 . Prove that 2M − 1 is always a strong pseudo-prime to the base 2 .

Paper 4, Section II

11G Number Theory
Let S be the set of all positive definite binary quadratic forms with integer

coefficients. Define the action of the group SL2(Z) on S, and prove that equivalent forms
under this action have the same discriminant.

Find necessary and sufficient conditions for an odd positive integer n, prime to 35,
to be properly represented by at least one of the two forms

x2 + xy + 9y2 , 3x2 + xy + 3y2 .
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Paper 1, Section II

39A Numerical Analysis
(a) State the Householder–John theorem and explain its relation to the convergence

analysis of splitting methods for solving a system of linear equations Ax = b with a positive
definite matrix A.

(b) Describe the Jacobi method for solving a system Ax = b, and deduce from the
above theorem that if A is a symmetric positive definite tridiagonal matrix,

A =




a1 c1
c1 a2 c2 0

. . .
. . .

. . .

0 cn−2 an−1 cn−1

cn−1 an




,

then the Jacobi method converges.

[Hint: At the last step, you may find it useful to consider two vectors x = (x1, x2, . . . , xn)
and y = ((−1)x1, (−1)2x2, . . . , (−1)nxn).]
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Paper 2, Section II

39A Numerical Analysis
The inverse discrete Fourier transform F−1

n : Rn → Rn is given by the formula

x = F −1
n y , where xℓ =

n−1∑

j=0

ω jℓ
n yj , ℓ = 0, . . . , n− 1 .

Here, ωn = exp(2πi/n) is the primitive root of unity of degree n, and n = 2p, p = 1, 2, . . . .

(1) Show how to assemble x = F −1
2m y in a small number of operations if we already

know the Fourier transforms of the even and odd portions of y:

x(E) = F −1
m y(E) , x(O) = F −1

m y(O) .

(2) Describe the Fast Fourier Transform (FFT) method for evaluating x and draw
a relevant diagram for n = 8 .

(3) Find the costs of the FFT for n = 2 p (only multiplications count).

(4) For n = 4, using the FFT technique, find

x = F −1
4 y , for y = [1, 1,−1,−1] , and y = [1,−1, 1,−1] .

Paper 3, Section II

39A Numerical Analysis
The Poisson equation ∇2u = f in the unit square Ω = [0, 1]× [0, 1] , u = 0 on ∂ Ω ,

is discretized with the five-point formula

ui, j−1 + ui, j+1 + ui+1, j + ui−1, j − 4u i, j = h2fi, j ,

where 1 6 i, j 6 M , ui, j ≈ u(ih, jh) and (ih, jh) are grid points.

Let u(x, y) be the exact solution, and let ei, j = ui, j − u(ih, jh) be the error of the
five-point formula at the (i, j)th grid point. Justifying each step, prove that

‖e‖ =




M∑

i,j=1

| e i, j |2


1/2

6 ch for sufficiently small h > 0 ,

where c is some constant independent of h.
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Paper 4, Section II

39A Numerical Analysis
An s-stage explicit Runge–Kutta method of order p, with constant step size h > 0,

is applied to the differential equation y′ = λ y, t > 0.

(a) Prove that
yn+1 = Ps(λh) yn .

where Ps is a polynomial of degree s.

(b) Prove that the order p of any s-stage explicit Runge–Kutta method satisfies the
inequality p 6 s and, for p = s, write down an explicit expression for Ps.

(c) Prove that no explicit Runge–Kutta method can be A-stable.

Part II, 2010 List of Questions [TURN OVER



66

Paper 2, Section II

29J Optimization and Control
(a) Suppose that

(
X
Y

)
∼ N

((
µX

µY

)
,

(
VXX VXY

VY X VY Y

))
.

Prove that conditional on Y = y, the distribution of X is again multivariate normal, with
mean µX + VXY V

−1
Y Y (y − µY ) and covariance VXX − VXY V

−1
Y Y VY X .

(b) The Rd-valued process X evolves in discrete time according to the dynamics

Xt+1 = AXt + εt+1,

where A is a constant d × d matrix, and εt are independent, with common N(0,Σε)
distribution. The process X is not observed directly; instead, all that is seen is the
process Y defined as

Yt = CXt + ηt,

where ηt are independent of each other and of the εt, with common N(0,Ση) distribution.

If the observer has the prior distribution X0 ∼ N(X̂0, V0) for X0, prove that at
all later times the distribution of Xt conditional on Yt ≡ (Y1, . . . , Yt) is again normally
distributed, with mean X̂t and covariance Vt which evolve as

X̂t+1 = AX̂t +MtC
T (Ση +CMtC

T )−1(Yt+1 − CAX̂t),

Vt+1 = Mt −MtC
T (Ση + CMtC

T )−1CMt,

where
Mt = AVtA

T +Σε.

(c) In the special case where both X and Y are one-dimensional, and A = C = 1,
Σε = 0, find the form of the updating recursion. Show in particular that

1

Vt+1
=

1

Vt
+

1

Ση

and that
X̂t+1

Vt+1
=

X̂t

Vt
+

Yt+1

Ση
.

Hence deduce that, with probability one,

lim
t→∞

X̂t = lim
t→∞

t−1
t∑

j=1

Yj.
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Paper 3, Section II

28J Optimization and Control
Consider an infinite-horizon controlled Markov process having per-period costs

c(x, u) > 0, where x ∈ X is the state of the system, and u ∈ U is the control. Costs
are discounted at rate β ∈ (0, 1], so that the objective to be minimized is

E
[ ∑

t>0

βtc(Xt, ut)
∣∣ X0 = x

]
.

What is meant by a policy π for this problem?

Let L denote the dynamic programming operator

Lf(x) ≡ inf
u∈U

{
c(x, u) + βE

[
f(X1)

∣∣X0 = x, u0 = u
] }

.

Further, let F denote the value of the optimal control problem:

F (x) = inf
π

Eπ

[ ∑

t>0

βtc(Xt, ut)
∣∣ X0 = x

]
,

where the infimum is taken over all policies π, and Eπ denotes expectation under policy
π. Show that the functions Ft defined by

Ft+1 = LFt (t > 0), F0 ≡ 0

increase to a limit F∞ ∈ [0,∞]. Prove that F∞ 6 F . Prove that F = LF .

Suppose that Φ = LΦ > 0. Prove that Φ > F .

[You may assume that there is a function u∗ : X → U such that

LΦ(x) = c(x, u∗(x)) + βE
[
Φ(X1)

∣∣X0 = x, u0 = u∗(x)
]
,

though the result remains true without this simplifying assumption.]
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Paper 4, Section II

28J Optimization and Control
Dr Seuss’ wealth xt at time t evolves as

dx

dt
= rxt + ℓt − ct,

where r > 0 is the rate of interest earned, ℓt is his intensity of working (0 6 ℓ 6 1), and
ct is his rate of consumption. His initial wealth x0 > 0 is given, and his objective is to
maximize ∫ T

0
U(ct, ℓt) dt,

where U(c, ℓ) = cα(1− ℓ)β , and T is the (fixed) time his contract expires. The constants α
and β satisfy the inequalities 0 < α < 1, 0 < β < 1, and α+ β > 1. At all times, ct must
be non-negative, and his final wealth xT must be non-negative. Establish the following
properties of the optimal solution (x∗, c∗, ℓ∗):

(i) βc∗t = α(1 − ℓ∗t );

(ii) c∗t ∝ e−γrt, where γ ≡ (β − 1 + α)−1;

(iii) x∗t = Aert +Be−γrt − r−1 for some constants A and B.

Hence deduce that the optimal wealth is

x∗t =
(1− e−γrT (1 + rx0))e

rt + ((1 + rx0)e
rT − 1)e−γrt

r(erT − e−γrT )
− 1

r
.
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Paper 1, Section II

30E Partial Differential Equations
(a) Solve by using the method of characteristics

x1
∂

∂x1
u+ 2x2

∂

∂x2
u = 5u , u(x1, 1) = g(x1) ,

where g : R → R is continuous. What is the maximal domain in R2 in which u is a solution
of the Cauchy problem?

(b) Prove that the function

u(x, t) =





0 , x < 0 , t > 0 ,
x/t , 0 < x < t , t > 0 ,
1 , x > t > 0 ,

is a weak solution of the Burgers equation

∂

∂t
u+

1

2

∂

∂x
u2 = 0 , x ∈ R, t > 0 , (∗)

with initial data

u(x, 0) =

{
0 , x < 0 ,
1 , x > 0 .

(c) Let u = u(x, t), x ∈ R, t > 0 be a piecewise C1-function with a jump
discontinuity along the curve

Γ : x = s(t)

and let u solve the Burgers equation (∗) on both sides of Γ. Prove that u is a weak solution
of (1) if and only if

ṡ(t) =
1

2
(ul(t) + ur(t))

holds, where ul(t), ur(t) are the one-sided limits

ul(t) = lim
xրs(t)−

u(x, t) , ur(t) = lim
xցs(t)+

u(x, t) .

[Hint: Multiply the equation by a test function φ ∈ C∞
0 (R × [0,∞)), split the integral

appropriately and integrate by parts. Consider how the unit normal vector along Γ can be
expressed in terms of ṡ.]
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Paper 2, Section II

31E Partial Differential Equations
(a) State the Lax-Milgram lemma. Use it to prove that there exists a unique function

u in the space

H2
∂(Ω) =

{
u ∈ H2(Ω) ;u|∂Ω = ∂u/∂γ|∂Ω = 0

}
,

where Ω is a bounded domain in Rn with smooth boundary and γ its outwards unit normal
vector, which is the weak solution of the equations

∆2u = f in Ω ,

u =
∂u

∂γ
= 0 on ∂ Ω ,

for f ∈ L2(Ω), ∆ the Laplacian and ∆2 = ∆∆.

[Hint: Use regularity of the solution of the Dirichlet problem for the Poisson equation.]

(b) Let Ω ⊂ Rn be a bounded domain with smooth boundary. Let u ∈ H1(Ω) and
denote

ū =

∫

Ω
u dnx

/∫

Ω
dnx .

The following Poincaré-type inequality is known to hold

‖u− ū‖L2 6 C‖∇u‖L2 ,

where C only depends on Ω. Use the Lax-Milgram lemma and this Poincaré-type inequality
to prove that the Neumann problem

∆u = f in Ω ,

∂u

∂γ
= 0 on ∂ Ω ,

has a unique weak solution in the space

H1
−(Ω) = H1(Ω) ∩ {u : Ω → R ; ū = 0}

if and only if f̄ = 0.
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Paper 3, Section II

30E Partial Differential Equations
Consider the Schrödinger equation

i∂tΨ = − 1

2
∆Ψ , x ∈ Rn , t > 0 ,

for complex-valued solutions Ψ(x, t) and where ∆ is the Laplacian.

(a) Derive, by using a Fourier transform and its inversion, the fundamental solution
of the Schrödinger equation. Obtain the solution of the initial value problem

i∂tΨ = − 1

2
∆Ψ , x ∈ Rn, t > 0 ,

Ψ(x, 0) = f(x) , x ∈ Rn ,

as a convolution.

(b) Consider the Wigner-transform of the solution of the Schrödinger equation

w(x, ξ, t) =
1

(2π)n

∫

Rn

Ψ(x+ 1
2 y, t) Ψ̄(x− 1

2 y, t) e
−iy·ξ dny ,

defined for x ∈ Rn, ξ ∈ Rn, t > 0. Derive an evolution equation for w by using the
Schrödinger equation. Write down the solution of this evolution equation for given initial
data w(x, ξ, 0) = g(x, ξ).

Paper 4, Section II

30E Partial Differential Equations
a) Solve the Dirichlet problem for the Laplace equation in a disc in R2

∆u = 0 in G = {x2 + y2 < R2} ⊆ R2 , R > 0 ,

u = uD on ∂G ,

using polar coordinates (r, ϕ) and separation of variables, u(x, y) = R(r)Θ(ϕ). Then use
the ansatz R(r) = rα for the radial function.

b) Solve the Dirichlet problem for the Laplace equation in a square in R2

∆u = 0 in G = [0, a] × [0, a] ,

u(x, 0) = f1(x) , u(x, a) = f2(x) , u(0, y) = f3(y) , u(a, y) = f4(y) .
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Paper 1, Section II

33C Principles of Quantum Mechanics
Two states |j1 m1〉1, |j2 m2〉2, with angular momenta j1, j2, are combined to form

states |J M〉 with total angular momentum

J = |j1 − j2|, |j1 − j2|+ 1 , . . . , j1 + j2 .

Write down the state with J = M = j1 + j2 in terms of the original angular momentum
states. Briefly describe how the other combined angular momentum states may be found
in terms of the original angular momentum states.

If j1 = j2 = j, explain why the state with J = 0 must be of the form

|0 0〉 =

j∑

m=−j

αm|j m〉1|j −m〉2 .

By considering J+|0 0〉, determine a relation between αm+1 and αm, hence find αm .

If the system is in the state |j j〉1|j −j〉2 what is the probability, written in terms
of j, of measuring the combined total angular momentum to be zero?

[Standard angular momentum states |j m〉 are joint eigenstates of J2 and J3, obeying

J±|j m〉 =
√

(j ∓m)(j ±m+ 1) |j m±1〉 .

Units in which ~ = 1 have been used throughout.]

Part II, 2010 List of Questions



73

Paper 2, Section II

33C Principles of Quantum Mechanics
Consider a joint eigenstate of J2 and J3, |j m〉. Write down a unitary operator

U(n, θ) for rotation of the state by an angle θ about an axis with direction n, where n is
a unit vector. How would a state with zero orbital angular momentum transform under
such a rotation?

What is the relation between the angular momentum operator J and the Pauli
matrices σ when j = 1

2? Explicitly calculate (J · a)2, for an arbitrary real vector a, in
this case. What are the eigenvalues of the operator J · a? Show that the unitary rotation
operator for j = 1

2 can be expressed as

U(n, θ) = cos
θ

2
− in · σ sin

θ

2
. (∗)

Starting with a state |12 m〉 the component of angular momentum along a direction
n′, making and angle θ with the z-axis, is susequently measured to be m′. Immediately
after this measurement the state is |12 m′〉θ. Write down an eigenvalue equation for |12 m′〉θ
in terms of n′ · J. Show that the probability for measuring an angular momentum of m′~
along the direction n′ is, assuming n′ is in the x-z plane,

∣∣〈12 m|12 m′〉θ
∣∣2 =

∣∣〈12 m|U(y, θ)|12 m′〉
∣∣2 ,

where y is a unit vector in the y-direction. Using (∗) show that the probability that
m = +1

2 , m
′ = −1

2 is of the form

A+B cos2
θ

2
,

determining the integers A and B in the process.

[Assume ~ = 1. The Pauli matrices are

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. ]
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Paper 3, Section II

33C Principles of Quantum Mechanics
What are the commutation relations between the position operator x̂ and mo-

mentum operator p̂ ? Show that this is consistent with x̂, p̂ being hermitian.

The annihilation operator for a harmonic oscillator is

a =

√
1

2~
(x̂+ ip̂)

in units where the mass and frequency of the oscillator are 1. Derive the relation [a, a†] = 1.
Write down an expression for the Hamiltonian

H = 1
2 p̂

2 + 1
2 x̂

2

in terms of the operator N = a†a .

Assume there exists a unique ground state |0〉 of H such that a|0〉 = 0. Explain
how the space of eigenstates |n〉, is formed, and deduce the energy eigenvalues for these
states. Show that

a|n〉 = A|n−1〉 , a†|n〉 = B|n+1〉 ,
finding A and B in terms of n.

Calculate the energy eigenvalues of the Hamiltonian for two harmonic oscillators

H = H1 +H2 , Hi =
1
2 p̂i

2 + 1
2 x̂i

2 , i = 1, 2 .

What is the degeneracy of the nth energy level? Suppose that the two oscillators are then
coupled by adding the extra term

∆H = λx̂1 x̂2

to H, where λ ≪ 1. Calculate the energies for the states of the unperturbed system with
the three lowest energy eigenvalues to first order in λ using perturbation theory.

[You may assume standard perturbation theory results.]
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Paper 4, Section II

32C Principles of Quantum Mechanics
The Hamiltonian for a quantum system in the Schrödinger picture is

H0 + V (t) ,

where H0 is independent of time. Define the interaction picture corresponding to this
Hamiltonian and derive a time evolution equation for interaction picture states.

Let |a〉 and |b〉 be orthonormal eigenstates of H0 with eigenvalues Ea and Eb

respectively. Assume V (t) = 0 for t 6 0. Show that if the system is initially, at t = 0, in
the state |a〉 then the probability of measuring it to be the state |b〉 after a time t is

1

~2

∣∣∣∣
∫ t

0
dt′〈b|V (t′)|a〉e i(Eb−Ea)t′/~

∣∣∣∣
2

(∗)

to order V (t)2.

Suppose a system has a basis of just two orthonormal states |1〉 and |2〉, with respect
to which

H0 = E I , V (t) = vt σ1 , t > 0 ,

where

I =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
.

Use (∗) to calculate the probability of a transition from state |1〉 to state |2〉 after a time
t to order v2.

Show that the time dependent Schrödinger equation has a solution

|ψ(t)〉 = exp

(
− i

~

(
Et I + 1

2vt
2 σ1

))
|ψ(0)〉 .

Calculate the transition probability exactly. Hence find the condition for the order v2

approximation to be valid.
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Paper 1, Section II

28J Principles of Statistics
The distribution of a random variable X is obtained from the binomial distribution

B(n; Π) by conditioning on X > 0; here Π ∈ (0, 1) is an unknown probability parameter
and n is known. Show that the distributions of X form an exponential family and identify
the natural sufficient statistic T , natural parameter Φ, and cumulant function k(φ). Using
general properties of the cumulant function, compute the mean and variance of X when
Π = π . Write down an equation for the maximum likelihood estimate Π̂ of Π and explain
why, when Π = π, the distribution of Π̂ is approximately normal N (π, π(1 − π)/n) for
large n.

Suppose we observe X = 1 . It is suggested that, since the condition X > 0 is
then automatically satisfied, general principles of inference require that the inference to
be drawn should be the same as if the distribution of X had been B(n; Π) and we had
observed X = 1 . Comment briefly on this suggestion.

Paper 2, Section II

28J Principles of Statistics
Define the Kolmogorov–Smirnov statistic for testing the null hypothesis that real

random variables X1, . . . ,Xn are independently and identically distributed with specified
continuous, strictly increasing distribution function F , and show that its null distribution
does not depend on F .

A composite hypothesis H0 specifies that, when the unknown positive parameter
Θ takes value θ, the random variables X1, . . . ,Xn arise independently from the uniform
distribution U [0, θ]. Letting J := arg max 16i6nXi, show that, under H0, the statistic
(J,XJ ) is sufficient for Θ. Show further that, given {J = j, Xj = ξ}, the random variables
(Xi : i 6= j) are independent and have the U [0, ξ] distribution. How might you apply the
Kolmogorov–Smirnov test to test the hypothesis H0?
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Paper 3, Section II

27J Principles of Statistics
Define the normal and extensive form solutions of a Bayesian statistical decision

problem involving parameter Θ, random variable X, and loss function L(θ, a). How are
they related? Let R0 = R0(Π) be the Bayes loss of the optimal act when Θ ∼ Π and no
data can be observed. Express the Bayes risk R1 of the optimal statistical decision rule
in terms of R0 and the joint distribution of (Θ,X).

The real parameter Θ has distribution Π, having probability density function π(·).
Consider the problem of specifying a set S ⊆ R such that the loss when Θ = θ is
L(θ, S) = c |S| − 1S(θ), where 1S is the indicator function of S, where c > 0, and where
|S| =

∫
S dx. Show that the “highest density” region S∗ := {θ : π(θ) > c} supplies a Bayes

act for this decision problem, and explain why R0(Π) 6 0.

For the case Θ ∼ N (µ, σ2), find an expression for R0 in terms of the standard
normal distribution function Φ.

Suppose now that c = 0.5 , that Θ ∼ N (0, 1) and that X|Θ ∼ N (Θ, 1/9). Show
that R1 < R0.

Paper 4, Section II

27J Principles of Statistics
Define completeness and bounded completeness of a statistic T in a statistical

experiment.

Random variables X1, X2, X3 are generated as Xi = Θ1/2 Z +(1−Θ)1/2 Yi , where
Z, Y1, Y2, Y3 are independently standard normal N (0, 1), and the parameter Θ takes
values in (0, 1). What is the joint distribution of (X1, X2, X3) when Θ = θ? Write
down its density function, and show that a minimal sufficient statistic for Θ based on
(X1, X2, X3) is T = (T1, T2) := (

∑3
i=1X

2
i , (

∑3
i=1 Xi)

2).

[Hint: You may use that if I is the n× n identity matrix and J is the n× n matrix all of
whose entries are 1, then aI + bJ has determinant an−1(a+nb), and inverse cI + dJ with
c = 1/a , d = −b/(a(a+ nb)).]

What is Eθ(T1)? Is T complete for Θ?

Let S := Prob(X2
1 6 1 | T ). Show that Eθ(S) is a positive constant c which does

not depend on θ, but that S is not identically equal to c . Is T boundedly complete for Θ?

Part II, 2010 List of Questions [TURN OVER



78

Paper 1, Section II

26I Probability and Measure

State Carathéodory’s extension theorem. Define all terms used in the statement.

Let A be the ring of finite unions of disjoint bounded intervals of the form

A =

m⋃

i=1

(ai, bi]

where m ∈ Z+ and a1 < b1 < . . . < am < bm . Consider the set function µ defined on A
by

µ(A) =

m∑

i=1

(bi − ai) .

You may assume that µ is additive. Show that for any decreasing sequence (Bn : n ∈ N)
in A with empty intersection we have µ(Bn) → 0 as n → ∞ .

Explain how this fact can be used in conjunction with Carathéodory’s extension

theorem to prove the existence of Lebesgue measure.

Paper 2, Section II

26I Probability and Measure

Show that any two probability measures which agree on a π-system also agree on

the σ-algebra generated by that π-system.

State Fubini’s theorem for non-negative measurable functions.

Let µ denote Lebesgue measure on R2. Fix s ∈ [0, 1). Set c =
√
1− s2 and λ =

√
c .

Consider the linear maps f, g, h : R2 → R2 given by

f(x, y) = (λ−1x, λy) , g(x, y) = (x, sx+ y) , h(x, y) = (x− sy, y) .

Show that µ = µ ◦ f−1 and that µ = µ ◦ g−1. You must justify any assertion you make

concerning the values taken by µ.

Compute r = f ◦ h ◦ g ◦ f . Deduce that µ is invariant under rotations.
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Paper 3, Section II

25I Probability and Measure

Let (Xn : n ∈ N) be a sequence of independent random variables with common

density function

f(x) = 1
π(1 + x2)

.

Fix α ∈ [0, 1] and set

Yn = sgn(Xn)|Xn|α, Sn = Y1 + . . .+ Yn.

Show that for all α ∈ [0, 1] the sequence of random variables Sn/n converges in distribution

and determine the limit.

[Hint: In the case α = 1 it may be useful to prove that E(eiuX1) = e−|u|, for all u ∈ R.]

Show further that for all α ∈ [0, 1/2) the sequence of random variables Sn/
√
n

converges in distribution and determine the limit.

[You should state clearly any result about random variables from the course to which you

appeal. You are not expected to evaluate explicitly the integral

m(α) =

∫ ∞

0

xα

π(1 + x2)
dx. ]

Paper 4, Section II

25I Probability and Measure

Let (Xn : n ∈ N) be a sequence of independent normal random variables having

mean 0 and variance 1. Set Sn = X1 + . . . + Xn and Un = Sn − ⌊Sn⌋ . Thus Un is the

fractional part of Sn . Show that Un converges to U in distribution, as n → ∞ where U is

uniformly distributed on [0, 1].
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Paper 1, Section II

19F Representation Theory
(i) Let N be a normal subgroup of the finite group G. Without giving detailed

proofs, define the process of lifting characters from G/N to G. State also the orthogonality
relations for G.

(ii) Let a, b be the following two permutations in S12,

a = (1 2 3 4 5 6)(7 8 9 10 11 12) ,

b = (1 7 4 10)(2 12 5 9)(3 11 6 8) ,

and let G = 〈a, b〉 , a subgroup of S12 . Prove that G is a group of order 12 and list the
conjugacy classes of G. By identifying a normal subgroup of G of index 4 and lifting
irreducible characters, calculate all the linear characters of G. Calculate the complete
character table of G. By considering 6th roots of unity, find explicit matrix representations
affording the non-linear characters of G.

Paper 2, Section II

19F Representation Theory
Define the concepts of induction and restriction of characters. State and prove the

Frobenius Reciprocity Theorem.

Let H be a subgroup of G and let g ∈ G. We write C(g) for the conjugacy class of
g in G, and write CG(g) for the centraliser of g in G. Suppose that H ∩ C(g) breaks up
into m conjugacy classes of H, with representatives x1, x2, . . . , xm .

Let ψ be a character of H. Writing IndG
H(ψ) for the induced character, prove that

(i) if no element of C(g) lies in H, then IndG
H(ψ)(g) = 0 ,

(ii) if some element of C(g) lies in H, then

IndG
H(ψ)(g) = |CG(g)|

m∑

i=1

ψ(xi)

|CH(xi)|
.

Let G = S4 and let H = 〈a, b〉 , where a = (1 2 3 4) and b = (1 3). Identify H as a
dihedral group and write down its character table. Restrict each G-conjugacy class to H
and calculate the H-conjugacy classes contained in each restriction. Given a character ψ
of H, express IndG

H(ψ)(g) in terms of ψ, where g runs through a set of conjugacy classes
of G. Use your calculation to find the values of all the irreducible characters of H induced
to G.
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Paper 3, Section II

19F Representation Theory
Show that the degree of a complex irreducible character of a finite group is a factor

of the order of the group.

State and prove Burnside’s paqb theorem. You should quote clearly any results you
use.

Prove that for any group of odd order n having precisely k conjugacy classes, the
integer n− k is divisible by 16.

Paper 4, Section II

19F Representation Theory
Define the circle group U(1). Give a complete list of the irreducible representations

of U(1).

Define the spin group G = SU(2), and explain briefly why it is homeomorphic to
the unit 3-sphere in R4. Identify the conjugacy classes of G and describe the classification
of the irreducible representations of G. Identify the characters afforded by the irreducible
representations. You need not give detailed proofs but you should define all the terms you
use.

Let G act on the space M3(C) of 3 × 3 complex matrices by conjugation, where
A ∈ SU(2) acts by

A : M 7→ A1MA1
−1 ,

in which A1 denotes the 3 × 3 block diagonal matrix

(
A 0
0 1

)
. Show that this gives a

representation of G and decompose it into irreducibles.
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Paper 1, Section II

23G Riemann Surfaces
Given a lattice Λ ⊂ C, we may define the corresponding Weierstrass ℘-function

to be the unique even Λ-periodic elliptic function ℘ with poles only on Λ and for which
℘(z)− 1/z2 → 0 as z → 0. For w 6∈ Λ , we set

f(z) = det




1 1 1
℘ (z) ℘ (w) ℘ (−z − w)
℘′(z) ℘′(w) ℘′(−z − w)


 ,

an elliptic function with periods Λ . By considering the poles of f , show that f has valency
at most 4 (i.e. is at most 4 to 1 on a period parallelogram).

If w 6∈ 1
3 Λ , show that f has at least six distinct zeros. If w ∈ 1

3 Λ , show that f
has at least four distinct zeros, at least one of which is a multiple zero. Deduce that the
meromorphic function f is identically zero.

If z1, z2, z3 are distinct non-lattice points in a period parallelogram such that
z1 + z2 + z3 ∈ Λ , what can be said about the points (℘(zi), ℘

′(zi)) ∈ C2 (i = 1, 2, 3)?

Paper 2, Section II

23G Riemann Surfaces
Given a complete analytic function F on a domain U ⊂ C, describe briefly how the

space of germs construction yields a Riemann surface R associated to F together with a
covering map π : R → U (proofs not required).

In the case when π is regular, explain briefly how, given a point P ∈ U , any closed
curve in U with initial and final points P yields a permutation of the set π−1(P ).

Now consider the Riemann surface R associated with the complete analytic function

(z2 − 1)1/2 + (z2 − 4)1/2

on U = C \ {±1,±2} , with regular covering map π : R → U . Which subgroup of the
full symmetric group of π−1(P ) is obtained in this way from all such closed curves (with
initial and final points P )?
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Paper 3, Section II

22G Riemann Surfaces
Show that the analytic isomorphisms (i.e. conformal equivalences) of the Riemann

sphere C∞ to itself are given by the non-constant Möbius transformations.

State the Riemann–Hurwitz formula for a non-constant analytic map between
compact Riemann surfaces, carefully explaining the terms which occur.

Suppose now that f : C∞ → C∞ is an analytic map of degree 2; show that there
exist Möbius transformations S and T such that

SfT : C∞ → C∞

is the map given by z 7→ z2.
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Paper 1, Section I

5J Statistical Modelling
Consider a binomial generalised linear model for data y1, ..., yn modelled as realisa-

tions of independent Yi ∼ Bin(1, µi) and logit link µi = eβxi/(1 + eβxi) for some known
constants xi, i = 1, . . . , n, and unknown scalar parameter β. Find the log-likelihood for
β, and the likelihood equation that must be solved to find the maximum likelihood estim-
ator β̂ of β. Compute the second derivative of the log-likelihood for β, and explain the
algorithm you would use to find β̂.

Paper 2, Section I

5J Statistical Modelling
Suppose you have a parametric model consisting of probability mass functions

f(y; θ), θ ∈ Θ ⊂ R. Given a sample Y1, ..., Yn from f(y; θ), define the maximum likelihood
estimator θ̂n for θ and, assuming standard regularity conditions hold, state the asymptotic
distribution of

√
n (θ̂n − θ).

Compute the Fisher information of a single observation in the case where f(y; θ) is
the probability mass function of a Poisson random variable with parameter θ. If Y1, ..., Yn

are independent and identically distributed random variables having a Poisson distribution
with parameter θ, show that Ȳ = 1

n

∑n
i=1 Yi and S = 1

n−1

∑n
i=1(Yi − Ȳ )2 are unbiased

estimators for θ. Without calculating the variance of S , show that there is no reason to
prefer S over Y .

[You may use the fact that the asymptotic variance of
√
n (θ̂n − θ) is a lower bound for

the variance of any unbiased estimator.]

Paper 3, Section I

5J Statistical Modelling
Consider the linear model Y = Xβ + ε , where Y is a n × 1 random vector,

ε ∼ Nn(0, σ
2I) , and where the n× p nonrandom matrix X is known and has full column

rank p. Derive the maximum likelihood estimator σ̂ 2 of σ 2. Without using Cochran’s
theorem, show carefully that σ̂ 2 is biased. Suggest another estimator σ̃ 2 for σ 2 that is
unbiased.
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Paper 4, Section I

5J Statistical Modelling
Below is a simplified 1993 dataset of US cars. The columns list index, make, model,

price (in $1000), miles per gallon, number of passengers, length and width in inches, and
weight (in pounds). The data are displayed in R as follows (abbreviated):

> cars

make model price mpg psngr length width weight

1 Acura Integra 15.9 31 5 177 68 2705

2 Acura Legend 33.9 25 5 195 71 3560

3 Audi 90 29.1 26 5 180 67 3375

4 Audi 100 37.7 26 6 193 70 3405

5 BMW 535i 30.0 30 4 186 69 3640

... ... ...

92 Volvo 240 22.7 28 5 190 67 2985

93 Volvo 850 26.7 28 5 184 69 3245

It is reasonable to assume that prices for different makes of car are independent. We model
the logarithm of the price as a linear combination of the other quantitative properties of
the cars and an error term. Write down this model mathematically. How would you
instruct R to fit this model and assign it to a variable “fit”?

R provides the following (slightly abbreviated) summary:

> summary(fit)

[...]

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.8751080 0.7687276 5.041 2.50e-06 ***

mpg -0.0109953 0.0085475 -1.286 0.201724

psngr -0.1782818 0.0290618 -6.135 2.45e-08 ***

length 0.0067382 0.0032890 2.049 0.043502 *

width -0.0517544 0.0151009 -3.427 0.000933 ***

weight 0.0008373 0.0001302 6.431 6.60e-09 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

[...]

Briefly explain the information that is being provided in each column of the table. What
are your conclusions and how would you try to improve the model?
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Paper 1, Section II

13J Statistical Modelling
Consider a generalised linear model with parameter β⊤ partitioned as (β⊤

0 , β
⊤
1 ),

where β0 has p0 components and β1 has p − p0 components, and consider testing
H0 : β1 = 0 against H1 : β1 6= 0 . Define carefully the deviance, and use it to construct a
test for H0 .

[You may use Wilks’ theorem to justify this test, and you may also assume that the
dispersion parameter is known.]

Now consider the generalised linear model with Poisson responses and the canonical
link function with linear predictor η = (η1, ..., ηn)

T given by ηi = x⊤i β , i = 1, ..., n ,
where x i1 = 1 for every i . Derive the deviance for this model, and argue that it may be
approximated by Pearson’s χ 2 statistic.
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Paper 4, Section II
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13J Statistical Modelling
Every day, Barney the darts player comes to our laboratory. We record his facial

expression, which can be either “mad”, “weird” or “relaxed”, as well as how many units
of beer he has drunk that day. Each day he tries a hundred times to hit the bull’s-eye,
and we write down how often he succeeds. The data look like this:

>

Day Beer Expression BullsEye

1 3 Mad 30

2 3 Mad 32
. . . .. . . .. . . .

60 2 Mad 37

61 4 Weird 30
. . . .. . . .. . . .

110 4 Weird 28

111 2 Relaxed 35
. . . .. . . .. . . .

150 3 Relaxed 31

Write down a reasonable model for Y1, . . . , Yn, where n = 150 and where Yi is the number
of times Barney has hit bull’s-eye on the ith day. Explain briefly why we may wish initially
to include interactions between the variables. Write the R code to fit your model.

The scientist of the above story fitted her own generalized linear model, and
subsequently obtained the following summary (abbreviated):

> summary(barney)

[...]

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.37258 0.05388 -6.916 4.66e-12 ***

Beer -0.09055 0.01595 -5.676 1.38e-08 ***

ExpressionWeird -0.10005 0.08044 -1.244 0.213570

ExpressionRelaxed 0.29881 0.08268 3.614 0.000301 ***

Beer:ExpressionWeird 0.03666 0.02364 1.551 0.120933

Beer:ExpressionRelaxed -0.07697 0.02845 -2.705 0.006825 **

[...]

Why are ExpressionMad and Beer:ExpressionMad not listed? Suppose on a particular
day, Barney’s facial expression is weird, and he drank three units of beer. Give the linear
predictor in the scientist’s model for this day.

Based on the summary, how could you improve your model? How could one fit this
new model in R (without modifying the data file)?
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Paper 2, Section II

35C Statistical Physics
Consider a 3-dimensional gas of N non-interacting particles in a box of size L where

the allowed momenta are {pi}. Assuming the particles have an energy ǫ(|p|), ǫ′(p) > 0,
calculate the density of states g(ǫ)dǫ as L → ∞.

Treating the particles as classical explain why the partition function is

Z =
zN

N !
, z =

∫ ∞

0
dǫ g(ǫ) e−ǫ/kT .

Obtain an expression for the total energy E.

Why is pi ∝ 1/L? By considering the dependence of the energies on the volume V
show that the pressure P is given by

PV =
N

3z

∫ ∞

0
dǫ g(ǫ) p ǫ′(p) e−ǫ/kT .

What are the results for the pressure for non-relativistic particles and also for
relativistic particles when their mass can be neglected?

What is the thermal wavelength for non-relativistic particles? Why are the
classical results correct if the thermal wavelength is much smaller than the mean particle
separation?
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Paper 3, Section II

35C Statistical Physics

(i) Given the following density of states for a particle in 3 dimensions

g(ε) = KV ε 1/2

write down the partition function for a gas of N such non-interacting particles,
assuming they can be treated classically. From this expression, calculate the energy
E of the system and the heat capacities CV and CP . You may take it as given that
PV = 2

3 E.

[Hint: The formula
∫∞
0 dy y2 e−y2 =

√
π/4 may be useful.]

(ii) Using thermodynamic relations obtain the relation between heat capacities and
compressibilities

CP

CV
=

κT
κS

where the isothermal and adiabatic compressibilities are given by

κ = − 1

V

∂V

∂P
,

derivatives taken at constant temperature and entropy, respectively.

(iii) Find κT and κS for the ideal gas considered above.
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Paper 4, Section II

34C Statistical Physics

(i) Let ρi be the probability that a system is in a state labelled by i with Ni particles
and energy Ei. Define

s(ρi) = −k
∑

i

ρi log ρi .

s(ρi) has a maximum, consistent with a fixed mean total number of particles N ,
mean total energy E and

∑
i ρi = 1, when ρi = ρ̄i. Let S(E,N) = s(ρ̄i) and show

that
∂S

∂E
=

1

T
,

∂S

∂N
= −µ

T
,

where T may be identified with the temperature and µ with the chemical potential.

(ii) For two weakly coupled systems 1,2 then ρi,j = ρ1,i ρ2,j and Ei,j = E1,i + E2,j,
Ni,j = N1,i+N2,j. Show that S(E,N) = S1(E1, N1)+S2(E2, N2) where, if S(E,N)
is stationary under variations in E1, E2 and N1, N2 for E = E1 +E2, N = N1 +N2

fixed, we must have T1 = T2, µ1 = µ2.

(iii) Define the grand partition function Z(T, µ) for the system in (i) and show that

k logZ = S − 1

T
E +

µ

T
N , S =

∂

∂T

(
kT logZ

)
.

(iv) For a system with single particle energy levels ǫr the possible states are labelled by
i = {nr : nr = 0, 1}, where Ni =

∑
r nr, Ei =

∑
r nrǫr and

∑
i =

∏
r

∑
nr=0,1. Show

that

ρ̄i =
∏

r

e−nr(ǫr−µ)/kT

1 + e−(ǫr−µ)/kT
.

Calculate n̄r. How is this related to a free fermion gas?
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Paper 1, Section II

29I Stochastic Financial Models
What is a Brownian motion? State the reflection principle for Brownian motion.

Let W = (Wt)t> 0 be a Brownian motion. Let M = max 06 t6 1 Wt . Prove

P(M > x, W1 6 x− y) = P(M > x, W1 > x+ y)

for all x, y > 0 . Hence, show that the random variables M and |W1| have the same
distribution.

Find the density function of the random variable R = W1/M .

Paper 2, Section II

30I Stochastic Financial Models
What is a martingale? What is a supermartingale? What is a stopping time?

Let M = (Mn)n> 0 be a martingale and M̂ = (M̂n)n> 0 a supermartingale with
respect to a common filtration. If M0 = M̂0 , show that EMT > EM̂T for any bounded
stopping time T .

[If you use a general result about supermartingales, you must prove it.]

Consider a market with one stock with prices S = (Sn)n> 0 and constant interest
rate r. Explain why an investor’s wealth X satisfies

Xn = (1 + r)Xn−1 + πn[Sn − (1 + r)Sn−1]

where πn is the number of shares of the stock held during the nth period.

Given an initial wealth X0, an investor seeks to maximize EU(XN ) where U is a
given utility function. Suppose the stock price is such that Sn = Sn−1 ξn where (ξn)n> 1 is
a sequence of independent and identically distributed random variables. Let V be defined
inductively by

V (n, x, s) = sup
p∈R

EV [n+ 1, (1 + r)x− ps (1 + r − ξ1), s ξ1]

with terminal condition V (N,x, s) = U(x) for all x, s ∈ R .

Show that the process (V (n,Xn, Sn))06n6N is a supermartingale for any trading
strategy π .

Suppose π∗ is a trading strategy such that the corresponding wealth process X∗

makes (V (n, X∗
n, Sn))06n6N a martingale. Show that π∗ is optimal.
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Paper 3, Section II

29I Stochastic Financial Models
Consider a market with two assets, a riskless bond and a risky stock, both of whose

initial (time-0) prices are B0 = 1 = S0 . At time 1, the price of the bond is a constant
B1 = R > 0 and the price of the stock S1 is uniformly distributed on the interval [0, C]
where C > R is a constant.

Describe the set of state price densities.

Consider a contingent claim whose payout at time 1 is given by S 2
1 . Use the

fundamental theorem of asset pricing to show that, if there is no arbitrage, the initial
price of the claim is larger than R and smaller than C.

Now consider an investor with initial wealth X0 = 1 , and assume C = 3R . The
investor’s goal is to maximize his expected utility of time-1 wealth EU [R + π(S1 − R)] ,
where U(x) =

√
x . Show that the optimal number of shares of stock to hold is π∗ = 1 .

What would be the investor’s marginal utility price of the contingent claim described
above?
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Paper 4, Section II

29I Stochastic Financial Models
Consider a market with no riskless asset and d risky stocks where the price of stock

i ∈ {1, . . . , d} at time t ∈ {0, 1} is denoted S i
t . We assume the vector S0 ∈ Rd is not

random, and we let µ = ES1 and V = E [(S1 −µ)(S1 −µ)T ] . Assume V is not singular.

Suppose an investor has initial wealth X0 = x , which he invests in the d stocks
so that his wealth at time 1 is X1 = πTS1 for some π ∈ Rd. He seeks to minimize the
var(X1) subject to his budget constraint and the condition that EX1 = m for a given
constant m ∈ R.

Illustrate this investor’s problem by drawing a diagram of the mean-variance efficient
frontier. Write down the Lagrangian for the problem. Show that there are two vectors πA
and πB (which do not depend on the constants x and m) such that the investor’s optimal
portfolio is a linear combination of πA and πB .

Another investor with initial wealth Y0 = y seeks to maximize EU(Y1) his expected
utility of time 1 wealth, subject to his budget constraint. Assuming that S1 is Gaussian
and U(w) = −e−γw for a constant γ > 0 , show that the optimal portfolio in this case is
also a linear combination of πA and πB .

[You may use the moment generating function of the Gaussian distribution without
derivation.]

Continue to assume S1 is Gaussian, but now assume that U is increasing, concave,
and twice differentiable, and that U, U ′ and U ′′ are of exponential growth but not
necessarily of the form U(w) = −e−γw . (Recall that a function f is of exponential
growth if |f(w)| 6 ae b |w| for some constants positive constants a, b.) Prove that the
utility maximizing investor still holds a linear combination of πA and πB .

[You may use the Gaussian integration by parts formula

E [∇f(Z)] = E [Zf(Z)]

where Z = (Z1, . . . , Zd)
T is a vector of independent standard normal random variables,

and f is differentiable and of exponential growth. You may also interchange integration
and differentiation without justification.]
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Paper 1, Section I

2F Topics in Analysis
Let (X, d) be a non-empty complete metric space with no isolated points, G an open

dense subset of X and E a countable dense subset of X.

(i) Stating clearly any standard theorem you use, prove that G\E is a dense subset of X.

(ii) If G is only assumed to be uncountable and dense in X, does it still follow that G \E
is dense in X? Justify your answer.

Paper 2, Section I

2F Topics in Analysis
(a) State the Weierstrass approximation theorem concerning continuous real func-

tions on the closed interval [0, 1].

(b) Let f : [0, 1] → R be continuous.

(i) If
∫ 1
0 f(x)xn dx = 0 for each n = 0, 1, 2, . . . , prove that f is the zero function.

(ii) If we only assume that
∫ 1
0 f(x)x 2n dx = 0 for each n = 0, 1, 2, . . . , prove that it still

follows that f is the zero function.

[If you use the Stone–Weierstrass theorem, you must prove it.]

(iii) If we only assume that
∫ 1
0 f(x)x 2n+1 dx = 0 for each n = 0, 1, 2, . . . , does it still

follow that f is the zero function? Justify your answer.
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Paper 3, Section I

2F Topics in Analysis
Let A = {z ∈ C : 1/2 6 |z| 6 2} and suppose that f is complex analytic on an

open subset containing A.

(i) Give an example, with justification, to show that there need not exist a sequence of
complex polynomials converging to f uniformly on A.

(ii) Let R ⊂ C be the positive real axis and B = A\R . Prove that there exists a sequence
of complex polynomials p1, p2, p3, . . . such that pj → f uniformly on each compact subset
of B.

(iii) Let p1, p2, p3, . . . be the sequence of polynomials in (ii). If this sequence converges
uniformly on A, show that

∫
C f(z) dz = 0 , where C = {z ∈ C : |z| = 1} .

Paper 4, Section I

2F Topics in Analysis
Find explicitly a polynomial p of degree 6 3 such that

sup
x∈[−1,1]

|x4 − p(x)| 6 sup
x∈[−1,1]

|x4 − q(x)|

for every polynomial q of degree 6 3 . Justify your answer.

Part II, 2010 List of Questions



97

Paper 2, Section II

11F Topics in Analysis
Let

Br(0) = {(x, y) ∈ R2 : x 2 + y 2 < r 2} ,
B = B1(0), and

C = {(x, y) ∈ R2 : x 2 + y 2 = 1} .
Let D = B ∪C .

(i) State the Brouwer fixed point theorem on the plane.

(ii) Show that the Brouwer fixed point theorem on the plane is equivalent to the non-
existence of a continuous map F : D → C such that F (p) = p for each p ∈ C .

(iii) Let G : D → R2 be continuous, 0 < ǫ < 1 and suppose that

|p−G(p)| < ǫ

for each p ∈ C . Using the Brouwer fixed point theorem or otherwise, prove that

B 1−ǫ(0) ⊆ G(B) .

[Hint: argue by contradiction.]

(iv) Let q ∈ B . Does there exist a continuous map H : D → R2 \ {q} such that H(p) = p
for each p ∈ C? Justify your answer.
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Paper 3, Section II

12F Topics in Analysis
(i) Let γ : [0, 1] → C \ {0} be a continuous map with γ(0) = γ(1). Define the

winding number w(γ; 0) of γ about the origin.

(ii) For j = 0, 1 , let γj : [0, 1] → C \ {0} be continuous with γj(0) = γj(1). Make
the following statement precise, and prove it: if γ0 can be continuously deformed into γ1
through a family of continuous curves missing the origin, then w(γ0; 0) = w(γ1; 0).

[You may use without proof the following fact: if γ, δ : [0, 1] → C\{0} are continuous with
γ(0) = γ(1), δ(0) = δ(1) and if |γ(t)| < |δ(t)| for each t ∈ [0, 1], then w(γ+δ; 0) = w(δ; 0).]

(iii) Let γ : [0, 1] → C \ {0} be continuous with γ(0) = γ(1). If γ(t) is not equal to
a negative real number for each t ∈ [0, 1], prove that w(γ; 0) = 0.

(iv) Let D = {z ∈ C : |z| 6 1} and C = {z ∈ C : |z| = 1} . If g : D → C is
continuous, prove that for each non-zero integer n, there is at least one point z ∈ C such
that z n + g(z) = 0 .
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Paper 1, Section II

38A Waves

Derive the wave equation governing the velocity potential φ for linearized sound

waves in a compressible inviscid fluid. How is the pressure disturbance related to the

velocity potential?

A semi-infinite straight tube of uniform cross-section is aligned along the positive

x-axis with its end at x = −L. The tube is filled with fluid of density ρ1 and sound speed

c1 in −L < x < 0 and with fluid of density ρ2 and sound speed c2 in x > 0 . A piston at

the end of the tube performs small oscillations such that its position is x = −L+ ǫ e iωt,

with ǫ ≪ L and ǫ ω ≪ c1, c2. Show that the complex amplitude of the velocity potential

in x > 0 is

−ǫ c1

(
c1
c2

cos
ωL

c1
+ i

ρ2
ρ1

sin
ωL

c1

)−1

.

Calculate the time-averaged acoustic energy flux in x > 0. Comment briefly on the

variation of this result with L for the particular case ρ2 ≪ ρ1 and c2 = O(c1).
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Paper 2, Section II

38A Waves
The equation of motion for small displacements u(x, t) in a homogeneous, isotropic,

elastic medium of density ρ is

ρ
∂2u

∂t2
=

(
λ+ µ

)∇(∇·u
)
+ µ∇2u ,

where λ and µ are the Lamé constants. Show that the dilatation ∇ ·u and rotation ∇∧u
each satisfy wave equations, and determine the corresponding wave speeds cP and cS .

Show also that a solution of the form u = A exp [i(k · x− ωt)] satisfies

ω2A = c 2P k (k ·A)− c 2S k ∧ (k ∧A) .

Deduce the dispersion relation and the direction of polarization relative to k for plane
harmonic P -waves and plane harmonic S-waves.

Now suppose the medium occupies the half-space z 6 0 and that the boundary
z = 0 is stress free. Show that it is possible to find a self-sustained combination of
evanescent P -waves and SV -waves (i.e. a Rayleigh wave), proportional to exp [ik(x− ct)]
and propagating along the boundary, provided the wavespeed c satisfies

(
2− c 2

c 2S

)2
= 4

(
1− c 2

c 2S

)1/2 (
1− c 2

c 2P

)1/2
.

[You are not required to show that this equation has a solution.]
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Paper 3, Section II

38A Waves

Consider the equation
∂2φ

∂t∂x
= −αφ ,

where α is a positive constant. Find the dispersion relation for waves of frequency ω and

wavenumber k . Sketch graphs of the phase velocity c(k) and the group velocity cg(k).

A disturbance localized near x = 0 at t = 0 evolves into a dispersing wave packet.

Will the wavelength and frequency of the waves passing a stationary observer located at

a large positive value of x increase or decrease for t > 0? In which direction do the crests

pass the observer?

Write down the solution φ(x, t) with initial value

φ(x, 0) =

∫ ∞

−∞
A(k) e ikx dk .

What can be said about A(−k) if φ is real?

Use the method of stationary phase to obtain an approximation for φ(V t, t) for fixed

V > 0 and large t. What can be said about the solution at x = −V t for large t?

[You may assume that

∫ ∞

−∞
e−au2

du =

√
π

a
for Re(a) > 0, a 6= 0.]
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Paper 4, Section II

38A Waves

Starting from the equations for one-dimensional unsteady flow of an inviscid

compressible fluid, show that it is possible to find Riemann invariants u ± Q that are

constant on characteristics C± given by

dx

dt
= u± c ,

where u(x, t) is the velocity of the fluid and c(x, t) is the local speed of sound. Show

that Q = 2(c − c0)/(γ − 1) for the case of a perfect gas with adiabatic equation of state

p = p0(ρ/ρ0)
γ , where p0 , ρ0 and γ are constants, γ > 1 and c = c0 when ρ = ρ0.

Such a gas initially occupies the region x > 0 to the right of a piston in an infinitely

long tube. The gas is initially uniform and at rest with density ρ0 . At t = 0 the piston

starts moving to the left at a constant speed V . Assuming that the gas keeps up with

the piston, find u(x, t) and c(x, t) in each of the three distinct regions that are defined by

families of C+ characteristics.

Now assume that the gas does not keep up with the piston. Show that the gas

particle at x = x0 when t = 0 follows a trajectory given, for t > x0/c0, by

x(t) =
γ + 1

γ − 1

(
c0t

x0

)2/(γ+1)

x0 −
2 c0t

γ − 1
.

Deduce that the velocity of any given particle tends to −2 c0/(γ − 1) as t → ∞.
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