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SECTION I

1H Number Theory

Define the continued fraction of a real number α.

Compute the continued fraction of
√

19.

2F Topics in Analysis

Let P0, P1, P2, . . . be non-zero orthogonal polynomials on an interval [a, b] such that
the degree of Pj is equal to j for every j = 0, 1, 2, . . . , where the orthogonality is with
respect to the inner product < f, g > =

∫ b
a
fg . If f is any continuous function on [a, b]

orthogonal to P0, P1, . . . , Pn−1 and not identically zero, prove that f must have at least
n distinct zeros in (a, b).

3G Geometry of Group Actions

Prove that an isometry of Euclidean space R3 is an affine transformation.

Deduce that a finite group of isometries of R3 has a common fixed point.

4G Coding and Cryptography

Define the entropy H(X) of a random variable X that takes no more than N
different values. What are the maximum and the minimum values for the entropy for a
fixed value of N? Explain when the maximum and minimum are attained. You should
prove any inequalities that you use.

Paper 1
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5J Statistical Modelling

Consider the following Binomial generalized linear model for data y1, . . . , yn, with
logit link function. The data y1, . . . , yn are regarded as observed values of independent
random variables Y1, . . . , Yn, where

Yi ∼ Bin(1, µi), log
µi

1− µi
= β>xi, i = 1, . . . , n,

where β is an unknown p-dimensional parameter, and where x1, . . . , xn are known p-
dimensional explanatory variables. Write down the likelihood function for y = (y1, . . . , yn)
under this model.

Show that the maximum likelihood estimate β̂ satisfies an equation of the form
X>y = X>µ̂, where X is the p × n matrix with rows x>1 , . . . , x

>
n , and where µ̂ =

(µ̂1, . . . , µ̂n), with µ̂i a function of xi and β̂, which you should specify.

Define the deviance D(y; µ̂) and find an explicit expression for D(y; µ̂) in terms of
y and µ̂ in the case of the model above.

6B Mathematical Biology

A gene product with concentration g is produced by a chemical S of concentration s,
is autocatalysed and degrades linearly according to the kinetic equation

dg

dt
= f(g, s) = s+ k

g2

1 + g2
− g,

where k > 0 is a constant.

First consider the case s = 0. Show that if k > 2 there are two positive steady
states, and determine their stability. Sketch the reaction rate f(g, 0).

Now consider s > 0. Show that there is a single steady state if s exceeds a critical
value. If the system starts in the steady state g = 0 with s = 0 and then s is increased
sufficiently before decreasing back to zero, show that a biochemical switch can be achieved
to a state g = g2, whose value you should determine.
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7A Dynamical Systems

Sketch the phase plane of the system

ẋ = y,

ẏ = −x+ x2 − ky,

(i) for k = 0 and (ii) for k = 1/10. Include in your sketches any trajectories that are the
separatrices of a saddle point. In case (ii) shade the domain of stability of the origin.

8C Further Complex Methods

The function F is defined by

F (z) =
∫ ∞

0

tz−1

(t+ 1)2
dt.

For which values of z does the integral converge?

Show that, for these values,

F (z) =
π(1− z)
sin(πz)

.
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9A Classical Dynamics

The action for a system with generalized coordinates qi(t) for a time interval [t1, t2]
is given by

S =
∫ t2

t1

L(qi, q̇i, t)dt,

where L is the Lagrangian. The end point values qi(t1) and qi(t2) are fixed.

Derive Lagrange’s equations from the principle of least action by considering the
variation of S for all possible paths.

Define the momentum pi conjugate to qi. Derive a condition for pi to be a constant
of the motion.

A symmetric top moves under the action of a potential V (θ). The Lagrangian is
given by

L =
1
2
I1

(
θ̇2 + φ̇2 sin2 θ

)
+

1
2
I3

(
ψ̇ + φ̇ cos θ

)2

− V,

where the generalized coordinates are the Euler angles (θ, φ, ψ) and the principal moments
of inertia are I1 and I3.

Show that ω3 = ψ̇+ φ̇ cos θ is a constant of the motion and give expressions for two
others. Show further that it is possible for the top to move with both θ and φ̇ constant
provided these satisfy the condition

I1φ̇
2 sin θ cos θ − I3ω3φ̇ sin θ =

dV

dθ
.
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10E Cosmology

The number density of particles of mass m at equilibrium in the early universe is
given by the integral

n =
4πgs

h3

∫ ∞
0

p2dp

exp[(E(p)− µ)/kT ]∓ 1
,

{
− bosons ,
+ fermions,

where E(p) = c
√
p2 +m2c2, µ is the chemical potential, and gs is the spin degeneracy.

Assuming that the particles remain in equilibrium when they become non-relativistic
(kT, µ� mc2), show that the number density can be expressed as

n = gs

(
2πmkT
h2

)3/2

e(µ−mc2)/kT .

[Hint: Recall that
∫∞

0
dx e−σ

2x2
=
√
π/(2σ), (σ > 0).]

At around t = 100 seconds, deuterium D forms through the nuclear fusion of
nonrelativistic protons p and neutrons n via the interaction p + n ↔ D. In equilibrium,
what is the relationship between the chemical potentials of the three species? Show that
the ratio of their number densities can be expressed as

nD
nnnp

≈
(
πmpkT

h2

)−3/2

eBD/kT ,

where the deuterium binding energy is BD = (mn +mp −mD) c2 and you may take
gD = 4. Now consider the fractional densities Xa = na/nB , where nB is the baryon
density of the universe, to re-express the ratio above in the form XD/(XnXp) , which
incorporates the baryon-to-photon ratio η of the universe.

[You may assume that the photon density is nγ = (16πζ(3)/(hc)3)(kT )3.]

Why does deuterium form only at temperatures much lower than that given by
kT ≈ BD ?
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SECTION II

11G Geometry of Group Actions

What is meant by an inversion in a circle in C ∪ {∞} ? Show that a composition
of two inversions is a Möbius transformation.

Hence, or otherwise, show that if C+ and C− are two disjoint circles in C, then the
composition of the inversions in C+ and C− has two fixed points.

12G Coding and Cryptography

State Shannon’s Noisy Coding Theorem for a binary symmetric channel.

Define the mutual information of two discrete random variables X and Y . Prove
that the mutual information is symmetric and non-negative. Define also the information
capacity of a channel.

A channel transmits numbers chosen from the alphabet A = {0, 1, 2} and has
transition matrix  1− 2β β β

β 1− 2β β
β β 1− 2β


for a number β with 0 6 β 6 1

3 . Calculate the information capacity of the channel.
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13J Statistical Modelling

Consider performing a two-way analysis of variance (ANOVA) on the following
data:

> Y[,,1] Y[,,2] Y[,,3]

[,1] [,2] [,1] [,2] [,1] [,2]

[1,] 2.72 6.66 [1,] -5.780 1.7200 [1,] -2.2900 0.158

[2,] 4.88 5.98 [2,] -4.600 1.9800 [2,] -3.1000 1.190

[3,] 3.49 8.81 [3,] -1.460 2.1500 [3,] -2.6300 1.190

[4,] 2.03 6.26 [4,] -1.780 0.7090 [4,] -0.2400 1.470

[5,] 2.39 8.50 [5,] -2.610 -0.5120 [5,] 0.0637 2.110

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

Explain and interpret the R commands and (slightly abbreviated) output below. In
particular, you should describe the model being fitted, and comment on the hypothesis
tests which are performed under the summary and anova commands.

> K <- dim(Y)[1]

> I <- dim(Y)[2]

> J <- dim(Y)[3]

> c(I,J,K)

[1] 2 3 10

> y <- as.vector(Y)

> a <- gl(I, K, length(y))

> b <- gl(J, K * I, length(y))

> fit1 <- lm(y ~ a + b)

> summary(fit1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.7673 0.3032 12.43 < 2e-16 ***

a2 3.4542 0.3032 11.39 3.27e-16 ***

b2 -6.3215 0.3713 -17.03 < 2e-16 ***

b3 -5.8268 0.3713 -15.69 < 2e-16 ***

> anova(fit1)
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Response: y

Df Sum Sq Mean Sq F value Pr(>F)

a 1 178.98 178.98 129.83 3.272e-16 ***

b 2 494.39 247.19 179.31 < 2.2e-16 ***

Residuals 56 77.20 1.38

The following R code fits a similar model. Briefly explain the difference between
this model and the one above. Based on the output of the anova call below, say whether
you prefer this model over the one above, and explain your preference.

> fit2 <- lm(y ~ a * b)

> anova(fit2)

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

a 1 178.98 178.98 125.6367 1.033e-15 ***

b 2 494.39 247.19 173.5241 < 2.2e-16 ***

a:b 2 0.27 0.14 0.0963 0.9084

Residuals 54 76.93 1.42

Finally, explain what is being calculated in the code below and give the value that
would be obtained by the final line of code.

> n <- I * J * K

> p <- length(coef(fit2))

> p0 <- length(coef(fit1))

> PY <- fitted(fit2)

> P0Y <- fitted(fit1)

> ((n - p)/(p - p0)) * sum((PY - P0Y)^2)/sum((y - PY)^2)
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14C Further Complex Methods

Show that under the change of variable z = sin2 x the equation

d2w

dx2
+ n2w = 0

becomes
d2w

dz2
+

2z − 1
2z(z − 1)

dw

dz
− n2

4(z − 1)z
w = 0.

Show that this is a Papperitz equation and that the corresponding P -function is

P


0 ∞ 1
0 1

2n 0 z
1
2 − 1

2n
1
2

 .

Deduce that F ( 1
2n,−

1
2n; 1

2 ; sin2 x) = cosnx.
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15E Cosmology

(i) A homogeneous and isotropic universe has mass density ρ(t) and scale factor
a(t). Show how the conservation of total energy (kinetic plus gravitational potential) when
applied to a test particle on the edge of a spherical region in this universe can be used to
obtain the Friedmann equation

H2 ≡
(
ȧ

a

)2

=
8πG

3
ρ− kc2

a2
,

where k is a constant. State clearly any assumptions you have made.

(ii) Assume that the universe is flat (k = 0) and filled with two major components:
pressure-free matter (PM = 0) and dark energy with equation of state PΛ = −ρΛc

2

where their mass densities today (t = t0) are given respectively by ρM0 and ρΛ0.
Assuming that each component independently satisfies the fluid conservation equation,
ρ̇ = −3H(ρ+ P/c2), show that the total mass density can be expressed as

ρ(t) =
ρM0

a3
+ ρΛ0,

where we have set a(t0) = 1.

Hence, solve the Friedmann equation and show that the scale factor can be
expressed in the form

a(t) = α(sinhβt)2/3,

where α and β are constants which you should specify in terms of ρM0, ρΛ0 and t0.

[Hint: try the substitution b = a3/2.]

Show that the scale factor a(t) has the expected behaviour for a matter-dominated
universe at early times (t→ 0) and that the universe accelerates at late times (t→∞).

16G Logic and Set Theory

What is a well-ordered set? Show that given any two well-ordered sets there is a
unique order isomorphism between one and an initial segment of the other.

Show that for any ordinal α and for any non-zero ordinal β there are unique ordinals
γ and δ with α = β.γ + δ and δ < β .

Show that a non-zero ordinal λ is a limit ordinal if and only if λ = ω.γ for some
non-zero ordinal γ .

[You may assume standard properties of ordinal addition, multiplication and
subtraction.]
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17F Graph Theory

State a result of Euler concerning the number of vertices, edges and faces of a
connected plane graph. Deduce that if G is a planar graph then δ(G) 6 5. Show that if
G is a planar graph then χ(G) 6 5.

Are the following statements true or false? Justify your answers.

[You may quote standard facts about planar and non-planar graphs, provided that
they are clearly stated.]

(i) If G is a graph with χ(G) 6 4 then G is planar.

(ii) If G is a connected graph with average degree at most 2.01 then G is planar.

(iii) If G is a connected graph with average degree at most 2 then G is planar.

18H Galois Theory

Find the Galois group of the polynomial f(x) = x4 + x3 + 1 over

(i) the finite field F2, (ii) the finite field F3,

(iii) the finite field F4, (iv) the field Q of rational numbers.

[Results from the course which you use should be stated precisely.]

19G Representation Theory

For a complex representation V of a finite group G, define the action of G on the
dual representation V ∗. If α denotes the character of V , compute the character β of V ∗.

[Your formula should express β(g) just in terms of the character α.]

Using your formula, how can you tell from the character whether a given represen-
tation is self-dual, that is, isomorphic to the dual representation?

Let V be an irreducible representation of G. Show that the trivial representation
occurs as a summand of V ⊗ V with multiplicity either 0 or 1. Show that it occurs once
if and only if V is self-dual.

For a self-dual irreducible representation V , show that V either has a nondegenerate
G-invariant symmetric bilinear form or a nondegenerate G-invariant alternating bilinear
form, but not both.

If V is an irreducible self-dual representation of odd dimension n, show that the
corresponding homomorphism G → GL(n,C) is conjugate to a homomorphism into the
orthogonal group O(n,C). Here O(n,C) means the subgroup of GL(n,C) that preserves
a nondegenerate symmetric bilinear form on Cn.
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20G Number Fields

(a) Define the ideal class group of an algebraic number field K. State a result
involving the discriminant of K that implies that the ideal class group is finite.

(b) Put K = Q(ω), where ω = 1
2 (1 +

√
−23), and let OK be the ring of integers

of K. Show that OK = Z + Zω. Factorise the ideals [2] and [3] in OK into prime ideals.
Verify that the equation of ideals

[2, ω][3, ω] = [ω]

holds. Hence prove that K has class number 3.

21F Algebraic Topology

(i) State the van Kampen theorem.

(ii) Calculate the fundamental group of the wedge S2 ∨ S1.

(iii) Let X = R3 \A where A is a circle. Calculate the fundamental group of X.

22F Linear Analysis

Suppose p and q are real numbers with p−1 + q−1 = 1 and p, q > 1. Show, quoting
any results on convexity that you need, that

a1/p b1/q 6
a

p
+
b

q

for all real positive a and b.

Define the space lp and show that it is a complete normed vector space.
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23H Riemann Surfaces

Define the terms Riemann surface, holomorphic map between Riemann surfaces
and biholomorphic map.

Show, without using the notion of degree, that a non-constant holomorphic map
between compact connected Riemann surfaces must be surjective.

Let φ be a biholomorphic map of the punctured unit disc ∆∗ = {0 < |z| < 1} ⊂ C
onto itself. Show that φ extends to a biholomorphic map of the open unit disc ∆ to itself
such that φ(0) = 0.

Suppose that f : R → S is a continuous holomorphic map between Riemann
surfaces and f is holomorphic on R \ {p}, where p is a point in R. Show that f is then
holomorphic on all of R.

[The Open Mapping Theorem may be used without proof if clearly stated.]

24H Differential Geometry

Let n > 1 be an integer, and let M(n) denote the set of n×n real-valued matrices.
We make M(n) into an n2-dimensional smooth manifold via the obvious identification
M(n) = Rn2

.

(a) Let GL(n) denote the subset

GL(n) = {A ∈M(n) : A−1 exists}.

Show that GL(n) is a submanifold of M(n). What is dimGL(n)?

(b) Now let SL(n) ⊂ GL(n) denote the subset

SL(n) = {A ∈ GL(n) : detA = 1}.

Show that for A ∈ GL(n),

(ddet)AB = tr(A−1B) detA.

Show that SL(n) is a submanifold of GL(n). What is the dimension of SL(n)?

(c) Now consider the set X = M(n) \ GL(n). For what values of n > 1 is X a
submanifold of M(n)?
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25J Probability and Measure

State the Dominated Convergence Theorem.

Hence or otherwise prove Kronecker’s Lemma: if (aj) is a sequence of non-negative
reals such that

∞∑
j=1

aj
j
<∞,

then

n−1
n∑
j=1

aj → 0 (n→∞).

Let ξ1, ξ2, . . . be independent N(0, 1) random variables and set Sn = ξ1 + . . .+ ξn.
Let F0 be the collection of all finite unions of intervals of the form (a, b), where a and b
are rational, together with the whole line R. Prove that with probability 1 the limit

m(B) ≡ lim
n→∞

1
n

n∑
j=1

IB(Sj)

exists for all B ∈ F0, and identify it. Is it possible to extend m defined on F0 to a measure
on the Borel σ-algebra of R? Justify your answer.
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26I Applied Probability

Let (Xt, t > 0) be an irreducible continuous-time Markov chain with initial
probability distribution π and Q-matrix Q (for short: a (π,Q) CTMC), on a finite state
space I.

(i) Define the terms reversible CTMC and detailed balance equations (DBEs) and
explain, without proof, the relation between them.

(ii) Prove that any solution of the DBEs is an equilibrium distribution (ED) for (Xt).

Let (Yn, n = 0, 1, . . .) be an irreducible discrete-time Markov chain with initial
probability distribution π̂ and transition probability matrix P̂ (for short: a (π̂, P̂ ) DTMC),
on the state space I.

(iii) Repeat the two definitions from (i) in the context of the DTMC (Yn). State also
in this context the relation between them, and prove a statement analogous to (ii).

(iv) What does it mean to say that (Yn) is the jump chain for (Xt)? State and prove
a relation between the ED π for the CTMC (Xt) and the ED π̂ for its jump chain
(Yn).

(v) Prove that (Xt) is reversible (in equilibrium) if and only if its jump chain (Yn) is
reversible (in equilibrium).

(vi) Consider now a continuous time random walk on a graph. More precisely, consider
a CTMC (Xt) on an undirected graph, where some pairs of states i, j ∈ I are
joined by one or more non-oriented ‘links’ eij(1), . . . , eij(mij). Here mij = mji is
the number of links between i and j. Assume that the jump rate qij is proportional
to mij . Can the chain (Xt) be reversible? Identify the corresponding jump chain
(Yn) (which determines a discrete-time random walk on the graph) and comment
on its reversibility.
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27I Principles of Statistics

An angler starts fishing at time 0. Fish bite in a Poisson Process of rate Λ per
hour, so that, if Λ = λ, the number Nt of fish he catches in the first t hours has the
Poisson distribution P(λt), while Tn, the time in hours until his nth bite, has the Gamma
distribution Γ(n, λ), with density function

p(t | λ) =
λn

(n− 1)!
tn−1 e−λ t (t > 0) .

Bystander B1 plans to watch for 3 hours, and to record the number N3 of fish caught.
Bystander B2 plans to observe until the 10th bite, and to record T10 , the number of hours
until this occurs.

For B1 , show that Λ̃1 := N3/3 is an unbiased estimator of Λ whose variance
function achieves the Cramér–Rao lower bound.

Find an unbiased estimator of Λ for B2, of the form Λ̃2 = k/T10. Does it achieve
the Cramér–Rao lower bound? Is it minimum-variance-unbiased? Justify your answers.

In fact, the 10th fish bites after exactly 3 hours. For each of B1 and B2, write
down the likelihood function for Λ based their observations. What does the Likelihood
Principle have to say about the inferences to be drawn by B1 and B2, and why? Compute
the estimates λ̃1 and λ̃2 produced by applying Λ̃1 and Λ̃2 to the observed data. Does the
method of minimum-variance-unbiased estimation respect the Likelihood Principle?
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28J Stochastic Financial Models

(a) In the context of the Black–Scholes formula, let S0 be the time-0 spot price, K
be the strike price, T be the time to maturity, and let σ be the volatility. Assume that the
interest rate r is constant and assume absence of dividends. Write EC (S0,K, σ, r, T ) for
the time-0 price of a standard European call. The Black–Scholes formula can be written
in the following form

EC (S0,K, σ, r, T ) = S0Φ (d1)− e−rTKΦ (d2) .

State how the quantities d1 and d2 depend on S0,K, σ, r and T .

Assume that you sell this option at time 0. What is your replicating portfolio at
time 0?

[No proofs are required.]

(b) Compute the limit of EC (S0,K, σ, r, T ) as σ → ∞ . Construct an explicit
arbitrage under the assumption that European calls are traded above this limiting price.

(c) Compute the limit of EC (S0,K, σ, r, T ) as σ → 0 . Construct an explicit
arbitrage under the assumption that European calls are traded below this limiting price.

(d) Express in terms of S0, d1 and T the derivative

∂

∂σ
EC (S0,K, σ, r, T ) .

[Hint: you may find it useful to express ∂
∂σd1 in terms of ∂

∂σd2.]

[You may use without proof the formula S0Φ′ (d1)− e−rTKΦ′ (d2) = 0.]

(e) Say what is meant by implied volatility and explain why the previous results
make it well-defined.
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29C Partial Differential Equations

(i) State the local existence theorem for the first order quasi-linear partial differen-
tial equation

n∑
j=1

aj(x, u)
∂u

∂xj
= b(x, u),

which is to be solved for a real-valued function with data specified on a hypersurface S.
Include a definition of “non-characteristic” in your answer.

(ii) Consider the linear constant-coefficient case (that is, when all the functions
a1, . . . , an are real constants and b(x, u) = cx+d for some c = (c1, . . . , cn) with c1, . . . , cn
real and d real) and with the hypersurface S taken to be the hyperplane x ·n = 0 . Explain
carefully the relevance of the non-characteristic condition in obtaining a solution via the
method of characteristics.

(iii) Solve the equation
∂u

∂y
+ u

∂u

∂x
= 0,

with initial data u(0, y) = −y prescribed on x = 0, for a real-valued function u(x, y).
Describe the domain on which your solution is C1 and comment on this in relation to the
theorem stated in (i).

30A Asymptotic Methods

Obtain an expression for the nth term of an asymptotic expansion, valid as λ→∞,
for the integral

I(λ) =
∫ 1

0

t2αe−λ(t2+t3) dt (α > −1/2).

Estimate the value of n for the term of least magnitude.

Obtain the first two terms of an asymptotic expansion, valid as λ → ∞, for the
integral

J(λ) =
∫ 1

0

t2αe−λ(t2−t3) dt (−1/2 < α < 0) .

[Hint:

Γ(z) =
∫ ∞

0

tz−1e−t dt . ]

[Stirling’s formula may be quoted.]
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31C Integrable Systems

Define an integrable system in the context of Hamiltonian mechanics with a finite
number of degrees of freedom and state the Arnold–Liouville theorem.

Consider a six-dimensional phase space with its canonical coordinates (pj , qj),
j = 1, 2, 3, and the Hamiltonian

1
2

3∑
j=1

pj
2 + F (r),

where r =
√
q2
1 + q2

2 + q2
3 and where F is an arbitrary function. Show that both

M1 = q2p3 − q3p2 and M2 = q3p1 − q1p3 are first integrals.

State the Jacobi identity and deduce that the Poisson bracket

M3 = {M1,M2}

is also a first integral. Construct a suitable expression out of M1,M2,M3 to demonstrate
that the system admits three first integrals in involution and thus satisfies the hypothesis
of the Arnold–Liouville theorem.

Paper 1



21

32D Principles of Quantum Mechanics

(a) If A and B are operators which each commute with their commutator [A,B],
show that [A, eB ] = [A,B]eB . By considering

F (λ) = eλAeλBe−λ(A+B)

and differentiating with respect to the parameter λ, show also that

eAeB = CeA+B = eA+BC

where C = e
1
2 [A,B].

(b) Consider a one-dimensional quantum system with position x̂ and momentum
p̂. Write down a formula for the operator U(α) corresponding to translation through
α, calculate [x̂, U(α)], and show that your answer is consistent with the assumption
that position eigenstates obey |x + α〉 = U(α)|x〉. Given this assumption, express the
wavefunction for U(α)|ψ〉 in terms of the wavefunction ψ(x) for |ψ〉.

Now suppose the one-dimensional system is a harmonic oscillator of mass m and
frequency ω. Show that

ψ0(x−α) = e−mωα
2/4~

∞∑
n=0

(mω
2~

)n/2 αn√
n!
ψn(x),

where ψn(x) are normalised wavefunctions with energies En = ~ω(n+ 1
2 ).

[Standard results for constructing normalised energy eigenstates in terms of anni-
hilation and creation operators

a =
(mω

2~

)1/2(
x̂+

i

mω
p̂
)
, a† =

(mω
2~

)1/2(
x̂− i

mω
p̂
)

may be quoted without proof.]
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33E Applications of Quantum Mechanics

A beam of particles each of mass m and energy ~2k2/(2m) scatters off an axisym-
metric potential V . In the first Born approximation the scattering amplitude is

f(θ) = − m

2π~2

∫
e−i(k−k0)·x′

V (x′) d3x′, (∗)

where k0 = (0, 0, k) is the wave vector of the incident particles and k = (k sin θ, 0, k cos θ) is
the wave vector of the outgoing particles at scattering angle θ (and φ = 0). Let q = k−k0

and q = |q|. Show that when the scattering potential V is spherically symmetric the
expression (∗) simplifies to

f(θ) = − 2m
~2q

∫ ∞
0

r′V (r′) sin(qr′) dr′,

and find the relation between q and θ.

Calculate this scattering amplitude for the potential V (r) = V0e
−r where V0 is a

constant, and show that at high energies the particles emerge predominantly in a narrow
cone around the forward beam direction. Estimate the angular width of the cone.

34D Electrodynamics

Frame S ′ is moving with uniform speed v in the x-direction relative to a laboratory
frame S. The components of the electric and magnetic fields E and B in the two frames
are related by the Lorentz transformation

E′x = Ex, E′y = γ(Ey − vBz), E′z = γ(Ez + vBy),

B′x = Bx, B′y = γ(By + vEz), B′z = γ(Bz − vEy),

where γ = 1/
√

1− v2 and units are chosen so that c = 1. How do the components of the
spatial vector F = E + iB (where i =

√
−1) transform?

Show that F′ is obtained from F by a rotation through θ about a spatial axis n,
where n and θ should be determined. Hence, or otherwise, show that there are precisely two
independent scalars associated with F which are preserved by the Lorentz transformation,
and obtain them.

[Hint: since |v| < 1 there exists a unique real ψ such that v = tanhψ.]
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35E General Relativity

For the metric
ds2 =

1
r2

(
−dt2 + dr2

)
, r > 0 ,

obtain the geodesic equations of motion. For a massive particle show that(
dr
dt

)2

= 1− 1
k2r2

,

for some constant k. Show that the particle moves on trajectories

r2 − t2 =
1
k2
, kr = sec τ , kt = tan τ ,

where τ is the proper time, if the origins of t, τ are chosen appropriately.

36A Fluid Dynamics II

Derive the relation between the stress tensor σij and the rate-of-strain tensor eij
in an incompressible Newtonian fluid, using the result that there is a linear dependence
between the components of σij and those of eij that is the same in all frames. Write down
the boundary conditions that hold at an interface between two viscous fluids.

Viscous fluid is contained in a channel between the rigid planes y = −a and y = a .
The fluid in y < 0 has dynamic viscosity µ− , while that in y > 0 has dynamic viscosity
µ+ . Gravity may be neglected. The fluids move through the channel in the x-direction
under the influence of a pressure gradient applied at the ends of the channel. It may be
assumed that the velocity has no z-components, and all quantities are independent of z .

Find a steady solution of the Navier–Stokes equation in which the interface between
the two fluids remains at y = 0, the fluid velocity is everywhere independent of x, and the
pressure gradient is uniform. Use it to calculate the following:

(a) the viscous tangential stress at y = −a and at y = a; and

(b) the ratio of the volume fluxes of the two different fluids.

Comment on the limits of each of the results in (a) and (b) as µ+/µ− → 1 , and as
µ+/µ− →∞ .
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37B Waves

Show that in an acoustic plane wave the velocity and perturbation pressure are
everywhere proportional and find the constant of proportionality.

Gas occupies a tube lying parallel to the x-axis. In the regions x < 0 and x > L the
gas has uniform density ρ0 and sound speed c0 . For 0 < x < L the gas is cooled so that
it has uniform density ρ1 and sound speed c1 . A harmonic plane wave with frequency ω
is incident from x = −∞ . Show that the amplitude of the wave transmitted into x > L
relative to that of the incident wave is

|T | =
[

cos2 k1L+
1
4
(
λ+ λ−1

)2
sin2 k1L

]−1/2

,

where λ = ρ1c1/ρ0c0 and k1 = ω/c1 .

What are the implications of this result if λ� 1?

38C Numerical Analysis

The Poisson equation ∇2u = f in the unit square Ω = [0, 1] × [0, 1], with zero
boundary conditions on ∂Ω, is discretized with the nine-point formula

10
3
um,n −

2
3

(um+1,n + um−1,n + um,n+1 + um,n−1)

− 1
6

(um+1,n+1 + um+1,n−1 + um−1,n+1 + um−1,n−1) = −h2fm,n,

where 1 6 m,n 6 M , um,n ≈ u(mh, nh), and (mh, nh) are grid points.

(a) Prove that, for any ordering of the grid points, the method can be written as
Au = b with a symmetric positive-definite matrix A.

(b) Describe the Jacobi method for solving a linear system of equations, and prove
that it converges for the above system.

[You may quote without proof the corollary of the Householder–John theorem
regarding convergence of the Jacobi method.]

END OF PAPER
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