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1B Principles of Dynamics

(i) Consider a light rigid circular wire of radius a and centre O. The wire lies in
a vertical plane, which rotates about the vertical axis through O. At time t the plane
containing the wire makes an angle φ(t) with a fixed vertical plane. A bead of mass m is
threaded onto the wire. The bead slides without friction along the wire, and its location
is denoted by A. The angle between the line OA and the downward vertical is θ(t).

Show that the Lagrangian of the system is

ma2

2
θ̇2 +

ma2

2
φ̇2 sin2 θ +mga cos θ .

Calculate two independent constants of the motion, and explain their physical significance.

(ii) A dynamical system has Hamiltonian H(q, p, λ), where λ is a parameter. Consider
an ensemble of identical systems chosen so that the number density of systems, f(q, p, t),
in the phase space element dq dp is either zero or one. Prove Liouville’s Theorem, namely
that the total area of phase space occupied by the ensemble is time-independent.

Now consider a single system undergoing periodic motion q(t), p(t). Give a heuristic
argument based on Liouville’s Theorem to show that the area enclosed by the orbit,

I =
∮
p dq ,

is approximately conserved as the parameter λ is slowly varied (i.e. that I is an adiabatic
invariant).

Consider H(q, p, λ) = 1
2p

2 + λq2n, with n a positive integer. Show that as λ is
slowly varied the energy of the system, E, varies as

E ∝ λ1/(n+1) .
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2F Functional Analysis

(i) Prove Riesz’s Lemma, that if V is a normed space and A is a vector subspace of
V such that for some 0 6 k < 1 we have d(x,A) 6 k for all x ∈ V with ||x|| = 1, then A
is dense in V . [Here d(x,A) denotes the distance from x to A.]

Deduce that any normed space whose unit ball is compact is finite-dimensional.
[You may assume that every finite-dimensional normed space is complete.]

Give an example of a sequence f1, f2, . . . in an infinite-dimensional normed space
such that ||fn|| 6 1 for all n, but f1, f2, . . . has no convergent subsequence.

(ii) Let V be a vector space, and let ||.||1 and ||.||2 be two norms on V . What does it
mean to say that ||.||1 and ||.||2 are equivalent?

Show that on a finite-dimensional vector space all norms are equivalent. Deduce
that every finite-dimensional normed space is complete.

Exhibit two norms on the vector space l1 that are not equivalent.

In addition, exhibit two norms on the vector space l∞ that are not equivalent.

3G Groups, Rings and Fields

(i) State Gauss’ Lemma on polynomial irreducibility. State and prove Eisenstein’s
criterion.

(ii) Which of the following polynomials are irreducible over Q? Justify your answers.

(a) x7 − 3x3 + 18x+ 12

(b) x4 − 4x3 + 11x2 − 3x− 5

(c) 1 + x+ x2 + . . .+ xp−1 with p prime

[Hint: consider substituting y = x− 1.]

(d) xn + px+ p2 with p prime.

[Hint: show any factor has degree at least two, and consider powers of p dividing
coefficients.]
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4B Dynamics of Differential Equations

(i) Define carefully what is meant by a Hopf bifurcation in a two-dimensional dynam-
ical system. Write down the normal form for this bifurcation, correct to cubic order, and
distinguish between bifurcations of supercritical and subcritical type. Describe, without
detailed calculations, how a general two-dimensional system with a Hopf bifurcation at
the origin can be reduced to normal form by a near-identity transformation.

(ii) A Takens-Bogdanov bifurcation of a fixed point of a two-dimensional system is
characterised by a Jacobian with the canonical form

A =
(

0 1
0 0

)
at the bifurcation point. Consider the system

ẋ = y + α1x
2 + β1xy + γ1y

2

ẏ = α2x
2 + β2xy + γ2y

2 .

Show that a near-identity transformation of the form

ξ = x+ a1x
2 + b1xy + c1y

2

η = y + a2x
2 + b2xy + c2y

2

exists that reduces the system to the normal (canonical) form, correct up to quadratic
terms,

ξ̇ = η, η̇ = α2ξ
2 + (β2 + 2α1)ξη.

It is known that the general form of the equations near the bifurcation point can
be written (setting p = α2, q = β2 + 2α1)

ξ̇ = η, η̇ = λξ + µη + pξ2 + qξη.

Find all the fixed points of this system, and the values of λ, µ for which these fixed
points have (a) steady state bifurcations and (b) Hopf bifurcations.

5F Combinatorics

State and prove Sperner’s lemma on antichains.

The family A ⊂ P[n] is said to split [n] if, for all distinct i, j ∈ [n], there exists
A ∈ A with i ∈ A but j /∈ A. Prove that if A splits [n] then n ≤

(
a

ba/2c
)
, where a = |A|.

Show moreover that, if A splits [n] and no element of [n] is in more than k < ba/2c
members of A, then n ≤

(
a
k

)
.
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6G Representation Theory

Let H be a group with three generators c, g, h and relations cp = gp = hp = 1,
cg = gc, ch = hc and gh = chg where p is a prime number.

(a) Show that |H| = p3. Show that the conjugacy classes of H are the singletons
{1}, {c}, . . . , {cp−1} and the sets {gmhn, cgmhn, . . . , cp−1gmhn}, as m,n range from
0 to p− 1, but (m,n) 6= (0, 0).

(b) Find p2 1-dimensional representations of H.

(c) Let ω 6= 1 be a pth root of unity. Show that the following defines an irreducible
representation of H on Cp:

ρ(c) = ωId,

ρ(g)ek = ωkek,

ρ(h)ep = e1 and ρ(h)ek = ek+1 if k < p

where the ek are the standard basis vectors of Cp.

(d) Show that (b) and (c) cover all irreducible isomorphism classes.

7H Differentiable Manifolds

For each of the following assertions, either provide a proof or give and justify a
counterexample.

[You may use, without proof, your knowledge of the de Rham cohomology of
surfaces.]

(a) A smooth map f : S2 → T 2 must have degree zero.

(b) An embedding ϕ : S1 → Σg extends to an embedding ϕ̄ : D2 → Σg if and only if
the map ∫

ϕ(S1)

: H1(Σg) → R

is the zero map.

(c) RP1 × RP2 is orientable.

(d) The surface Σg admits the structure of a Lie group if and only if g = 1.
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8G Algebraic Topology

Let K and L be finite simplicial complexes. Define the n-th chain group Cn(K)
and the boundary homomorphism dn : Cn(K) → Cn−1(K). Prove that dn−1dn = 0 and
define the homology groups of K. Explain briefly how a simplicial map f : K → L induces
a homomorphism f? of homology groups.

Suppose now that K consists of the proper faces of a 3-dimensional simplex.
Calculate from first principles the homology groups of K. If a simplicial map f : K → K
gives a homeomorphism of the underlying polyhedron |K|, is the induced homology map
f? necessarily the identity?

9H Number Fields

Let m be an integer greater than 1 and let ζm denote a primitive m-th root of unity
in C. Let O be the ring of integers of Q(ζm). If p is a prime number with (p,m) = 1,
outline the proof that

pO = ℘1 . . . ℘r,

where the ℘i are distinct prime ideals of O, and r = ϕ(m)/f with f the least integer > 1
such that pf ≡ 1 mod m. [Here ϕ(m) is the Euler ϕ-function of m].

Determine the factorisations of 2, 3, 5 and 11 in Q(ζ5). For each integer n > 1,
prove that, in the ring of integers of Q(ζ5n), there is a unique prime ideal dividing 2, and
a unique prime ideal dividing 3.

10H Algebraic Curves

For each of the following curves C

(i) C = {(x, y) ∈ A2|x3 − x = y2} (ii) C = {(x, y) ∈ A2|x2y + xy2 = x4 + y4}

compute the points at infinity of C̄ ⊂ P2 (i.e. describe C̄ \C), and find the singular points
of the projective curve C̄.

At which points of C̄ is the rational map C̄ 99K P1, given by (X : Y : Z) 7→ (X : Y ),
not defined? Justify your answer.
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11F Logic, Computation and Set Theory

Define the sets Vα, α ∈ ON . Show that each Vα is transitive, and explain why
Vα ⊆ Vβ whenever α 6 β. Prove that every set x is a member of some Vα.

Which of the following are true and which are false? Give proofs or counterexamples
as appropriate. You may assume standard properties of rank.

(a) If the rank of a set x is a (non-zero) limit then x is infinite.

(b) If the rank of a set x is a successor then x is finite.

(c) If the rank of a set x is countable then x is countable.

12I Probability and Measure

Let (Ω,F , µ) be a measure space and let 1 6 p 6 ∞.

(a) Define the Lp-norm ||f ||p of a measurable function f : Ω → R, and define the space
Lp(Ω,F , µ).

(b) Prove Minkowski’s inequality:

||f + g||p 6 ||f ||p + ||g||p for f, g ∈ Lp(Ω,F , µ), 1 6 p 6 ∞.

[You may use Hölder’s inequality without proof provided it is clearly stated.]

(c) Explain what is meant by saying that Lp(Ω,F , µ) is complete. Show that
L∞(Ω,F , µ) is complete.

(d) Suppose that {fn : n > 1} is a sequence of measurable functions satisfying
||fn||p → 0 as n→∞.

(i) Show that if p = ∞, then fn → 0 almost everywhere.

(ii) When 1 6 p <∞, give an example of a measure space (Ω,F , µ) and such a
sequence {fn} such that, for all ω ∈ Ω, fn(ω) 6→ 0 as n→∞.

13I Applied Probability

Let M be a Poisson random measure of intensity λ on the plane R2. Denote by
C(r) the circle {x ∈ R2 : ||x|| < r} of radius r in R2 centred at the origin and let Rk be
the largest radius such that C(Rk) contains precisely k points of M . [Thus C(R0) is the
largest circle about the origin containing no points of M , C(R1) is the largest circle about
the origin containing a single point of M , and so on.] Calculate ER0, ER1 and ER2.

Now let N be a Poisson random measure of intensity λ on the line R1. Let Lk

be the length of the largest open interval that covers the origin and contains precisely k
points of N . [Thus L0 gives the length of the largest interval containing the origin but no
points of N,L1 gives the length of the largest interval containing the origin and a single
point of N , and so on.] Calculate EL0, EL1 and EL2.
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14J Information Theory

For integer-valued random variables X and Y , define the relative entropy hY (X)
of X relative to Y .

Prove that hY (X) > 0, with equality if and only if P(X = x) = P(Y = x) for all x.

By considering Y , a geometric random variable with parameter chosen appropri-
ately, show that if the mean EX = µ <∞, then

h(X) 6 (µ+ 1) log(µ+ 1)− µ logµ ,

with equality if X is geometric.

15I Optimization and Control

A gambler is presented with a sequence of n > 6 random numbers, N1, N2, . . . , Nn,
one at a time. The distribution of Nk is

P (Nk = k) = 1− P (Nk = −k) = p ,

where 1/(n − 2) < p ≤ 1/3. The gambler must choose exactly one of the numbers, just
after it has been presented and before any further numbers are presented, but must wait
until all the numbers are presented before his payback can be decided. It costs £1 to play
the game. The gambler receives payback as follows: nothing if he chooses the smallest of
all the numbers, £2 if he chooses the largest of all the numbers, and £1 otherwise.

Show that there is an optimal strategy of the form “Choose the first number k such
that either (i) Nk > 0 and k ≥ n− r0, or (ii) k = n− 1”, where you should determine the
constant r0 as explicitly as you can.
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16J Principles of Statistics

(i) In the context of a decision-theoretic approach to statistics, what is a loss function?
a decision rule? the risk function of a decision rule? the Bayes risk of a decision rule? the
Bayes rule with respect to a given prior distribution?

Show how the Bayes rule with respect to a given prior distribution is computed.

(ii) A sample of n people is to be tested for the presence of a certain condition. A
single real-valued observation is made on each one; this observation comes from density
f0 if the condition is absent, and from density f1 if the condition is present. Suppose
θi = 0 if the ith person does not have the condition, θi = 1 otherwise, and suppose that
the prior distribution for the θi is that they are independent with common distribution
P (θi = 1) = p ∈ (0, 1), where p is known. If Xi denotes the observation made on the ith

person, what is the posterior distribution of the θi?

Now suppose that the loss function is defined by

L0(θ, a) ≡
n∑

j=1

(αaj(1− θj) + β(1− aj)θj)

for action a ∈ [0, 1]n, where α, β are positive constants. If πj denotes the posterior
probability that θj = 1 given the data, prove that the Bayes rule for this prior and this
loss function is to take aj = 1 if πj exceeds the threshold value α/(α+ β), and otherwise
to take aj = 0.

In an attempt to control the proportion of false positives, it is proposed to use a
different loss function, namely,

L1(θ, a) ≡ L0(θ, a) + γI{
∑

aj>0}

(
1−

∑
θjaj∑
aj

)
,

where γ > 0. Prove that the Bayes rule is once again a threshold rule, that is, we take
action aj = 1 if and only if πj > λ, and determine λ as fully as you can.
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17B Nonlinear Dynamical Systems

(i) A linear system in R2 takes the form ẋ = Ax. Explain (without detailed calculation
but by giving examples) how to classify the dynamics of the system in terms of the
determinant and the trace of A. Show your classification graphically, and describe the
dynamics that occurs on the boundaries of the different regions on your diagram.

(ii) A nonlinear system in R2 has the form ẋ = f(x), f(0) = 0. The Jacobian
(linearization) A of f at the origin is non-hyperbolic, with one eigenvalue of A in the
left-hand half-plane. Define the centre manifold for this system, and explain (stating
carefully any results you use) how the dynamics near the origin may be reduced to a
one-dimensional system on the centre manifold.

A dynamical system of this type has the form

ẋ = ax3 + bxy + cx5 + dx3y + exy2 + fx7 + gx5y

ẏ = −y + x2 − x4

Find the coefficients for the expansion of the centre manifold correct up to and
including terms of order x6, and write down in terms of these coefficients the equation for
the dynamics on the centre manifold up to order x7. Using this reduced equation, give a
complete set of conditions on the coefficients a, b, c, . . . that guarantee that the origin is
stable.

18D Partial Differential Equations

(a) State and prove the Duhamel principle for the wave equation.

(b) Let u ∈ C2([0, T ]× Rn) be a solution of

utt + ut −∆u+ u = 0

where ∆ is taken in the variables x ∈ Rn and ut = ∂tu etc.

Using an ‘energy method’, or otherwise, show that, if u = ut = 0 on the set
{t = 0, |x − x0| 6 t0} for some (t0, x0) ∈ [0, T ] × Rn, then u vanishes on the region
K(t, x) = {(t, x) : 0 6 t 6 t0, |x− x0| 6 t0 − t}. Hence deduce uniqueness for the Cauchy
problem for the above PDE with Schwartz initial data.
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19D Methods of Mathematical Physics

(a) The Beta function is defined by

B (p, q) =
∫ 1

0

xp−1(1− x)q−1dx .

Show that
B (p, q) =

∫ ∞

1

x−p−q(x− 1)q−1dx .

(b) The function J(p, q) is defined by

J(p, q) =
∫

γ

tp−1(1− t)q−1dt ,

where the integrand has a branch cut along the positive real axis. Just above the cut,
arg t = 0. For t > 1 just above the cut, arg (1 − t) = −π. The contour γ runs from
t = ∞e2πi, round the origin in the negative sense, to t = ∞ (i.e. the contour is a reflection
of the usual Hankel contour). What restriction must be placed on p and q for the integral
to converge?

By evaluating J(p, q) in two ways, show that(
1− e2πip

)
B (p, q) +

(
e−πi(q−1) − eπi(2p+q−1)

)
B (1− p− q, q) = 0 ,

where p and q are any non-integer complex numbers.

Using the identity

B(p, q) =
Γ(p)Γ(q)
Γ(p+ q)

,

deduce that

Γ(p)Γ(1− p) sin(πp) = Γ(p+ q)Γ(1− p− q) sin[π(1− p− q)] ,

and hence that
π = Γ(q)Γ(1− q) sin[π(1− q)] .
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20D Numerical Analysis

(i) The five-point equations, which are obtained when the Poisson equation ∇2u = f
(with Dirichlet boundary conditions) is discretized in a square, are

−um−1,n − um,n−1 − um+1,n − um,n+1 + 4um,n = fm,n, m, n = 1, 2, . . . ,M,

where u0,n, uM+1,n, um,0, um,M+1 = 0 for all m,n = 1, 2, . . . ,M .

Formulate the Gauss–Seidel method for the above linear system and prove its
convergence. In the proof you should carefully state any theorems you use. [You may
use Part (ii) of this question.]

(ii) By arranging the two-dimensional arrays {um,n}m,n=1,...,M and {bm,n}m,n=1,...,M

into the column vectors u ∈ RM2
and b ∈ RM2

respectively, the linear system described
in Part (i) takes the matrix form Au = b. Prove that, regardless of the ordering of the
points on the grid, the matrix A is symmetric and positive definite.

21C Electrodynamics

A particle of rest mass m and charge q moves along a path xa(s), where s is the
particle’s proper time. The equation of motion is

mẍa = qF abηbcẋ
c,

where ẋa = dxa/ds etc., F ab is the Maxwell field tensor (F 01 = −Ex, F 23 = −Bx,
where Ex and Bx are the x-components of the electric and magnetic fields) and ηbc is the
Minkowski metric tensor. Show that ẋaẍ

a = 0 and interpret both the equation of motion
and this equation in the classical limit.

The electromagnetic field is given in cartesian coordinates by E = (0, E, 0) and
B = (0, 0, E), where E is constant and uniform. The particle starts from rest at the
origin. Show that the orbit is given by

9x2 = 2αy3, z = 0,

where α = qE/m.
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22E Foundations of Quantum Mechanics

(i) The creation and annihilation operators for a harmonic oscillator of angular
frequency ω satisfy the commutation relation [a, a†] = 1. Write down an expression for
the Hamiltonian H in terms of a and a†.

There exists a unique ground state |0〉 of H such that a|0〉 = 0. Explain how the
space of eigenstates |n〉, n = 0, 1, 2, . . . of H is formed, and deduce the eigenenergies for
these states. Show that

a|n〉 =
√
n|n− 1〉 , a†|n〉 =

√
n+ 1|n+ 1〉 .

(ii) Write down the number operator N of the harmonic oscillator in terms of a and
a†. Show that

N |n〉 = n|n〉 .

The operator Kr is defined to be

Kr =
a†rar

r!
, r = 0, 1, 2, . . . .

Show that Kr commutes with N . Show also that

Kr|n〉 =

{ n!
(n−r)! r! |n〉 r ≤ n ,

0 r > n .

By considering the action of Kr on the state |n〉 show that

∞∑
r=0

(−1)rKr = |0〉〈0| .
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23E Applications of Quantum Mechanics

The wave function for a single particle with a potential V (r) has the asymptotic
form for large r

ψ(r, θ) ∼ eikr cos θ + f(θ)
eikr

r
.

How is f(θ) related to observable quantities? Show how f(θ) can be expressed in terms
of phase shifts δ`(k) for ` = 0, 1, 2, . . ..

Assume that V (r) = 0 for r ≥ a, and let R`(r) denote the solution of the radial
Schrödinger equation, regular at r = 0, with energy ~2k2/2m and angular momentum `.
Let N`(k) = aR`

′(a)/R`(a). Show that

tan δ`(k) =
N`(k) j`(ka)− ka j`

′(ka)
N`(k) n`(ka)− kan`

′(ka)
.

Assuming that N`(k) is a smooth function for k ≈ 0, determine the expected behaviour
of δ`(k) as k → 0. Show that for k → 0 then f(θ) → c, with c a constant, and determine
c in terms of N0(0).

[
For V = 0 the two independent solutions of the radial Schrödinger equation are j`(kr)

and n`(kr) with

j`(ρ) ∼
1
ρ

sin(ρ− 1
2`π), n`(ρ) ∼ −1

ρ
cos(ρ− 1

2`π) as ρ→∞ ,

j`(ρ) ∝ ρ`, n`(ρ) ∝ ρ−`−1 as ρ→ 0 ,

eiρ cos θ =
∞∑

`=0

(2`+ 1)i` j`(ρ)P`(cos θ) ,

j0(ρ) =
sin ρ
ρ

, n0(ρ) = −cos ρ
ρ

.

]
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24C General Relativity

(i) State and prove Birkhoff’s theorem.

(ii) Derive the Schwarzschild metric and discuss its relevance to the problem of
gravitational collapse and the formation of black holes.

[Hint: You may assume that the metric takes the form

ds2 = −eν(r,t) dt2 + eλ(r,t) dr2 + r2(dθ2 + sin2 θ dφ2),

and that the non-vanishing components of the Einstein tensor are given by

Gtt =
e2ν+λ

r2
(−1 + eλ + rλ′), Grt = e(ν+λ)/2 λ̇

r
, Grr =

eλ

r2
(1− e−λ + rν′),

Gθθ = 1
4r

2e−λ
[
2ν′′ + (ν′)2 +

2
r
(ν′ − λ′)− ν′λ′

]
− 1

4r
2e−ν

[
2λ̈+ (λ̇)2 − λ̇ν̇

]
,

Gtr = Grt and Gφφ = sin2 θ Gθθ.]

25A Fluid Dynamics II

An incompressible fluid with density ρ and viscosity µ is forced by a pressure
difference ∆p through the narrow gap between two parallel circular cylinders of radius a
with axes 2a+ b apart. Explaining any approximations made, show that, provided b� a
and ρb3∆p� µ2a, the volume flux (per unit length of cylinder) is

2b5/2∆p
9πa1/2µ

when the cylinders are stationary.

Show also that when the two cylinders rotate with angular velocities Ω and −Ω
respectively, the change in the volume flux is

4
3
baΩ.

For the case ∆p = 0, find and sketch the function f(x) = u0(x)/(aΩ), where u0 is the
centreline velocity at position x along the gap in the direction of flow. Comment on the
values taken by f .
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26A Waves in Fluid and Solid Media

The linearised equation of motion governing small disturbances in a homogeneous
elastic medium of density ρ is

ρ
∂2u
∂t2

= (λ+ µ)∇(∇ · u) + µ∇2u ,

where u(x, t) is the displacement, and λ and µ are the Lamé constants. Derive solutions for
plane longitudinal waves P with wavespeed cP , and plane shear waves S with wavespeed
cS .

The half-space y < 0 is filled with the elastic solid described above, while the slab
0 < y < h is filled with an elastic solid with shear modulus µ, and wavespeeds cP and
cS . There is a vacuum in y > h. A harmonic plane SH wave of frequency ω and unit
amplitude propagates from y < 0 towards the interface y = 0. The wavevector is in the
xy-plane, and makes an angle θ with the y-axis. Derive the complex amplitude, R, of the
reflected SH wave in y < 0. Evaluate |R| for all possible values of cS/cS , and explain your
answer.
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