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1/I/1C Linear Algebra

Let V be an n-dimensional vector space over R, and let β : V → V be a linear
map. Define the minimal polynomial of β. Prove that β is invertible if and only if the
constant term of the minimal polynomial of β is non-zero.

1/II/9C Linear Algebra

Let V be a finite dimensional vector space over R, and V ∗ be the dual space of V .
If W is a subspace of V , we define the subspace α(W ) of V ∗ by

α(W ) = {f ∈ V ∗ : f(w) = 0 for all w in W} .

Prove that dim(α(W )) = dim(V )− dim(W ). Deduce that, if A = (aij) is any real
m× n-matrix of rank r, the equations

n∑
j=1

aij xj = 0 (i = 1, . . . ,m)

have n− r linearly independent solutions in Rn.

2/I/1C Linear Algebra

Let Ω be the set of all 2 × 2 matrices of the form α = aI + bJ + cK + dL, where
a, b, c, d are in R, and

I =
(

1 0
0 1

)
, J =

(
i 0
0 −i

)
, K =

(
0 1
−1 0

)
, L =

(
0 i
i 0

)
(i2 = −1) .

Prove that Ω is closed under multiplication and determine its dimension as a vector
space over R. Prove that

(aI + bJ + cK + dL) (aI − bJ − cK − dL) = (a2 + b2 + c2 + d2)I ,

and deduce that each non-zero element of Ω is invertible.
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2/II/10C Linear Algebra

(i) Let A = (aij) be an n× n matrix with entries in C. Define the determinant of
A, the cofactor of each aij , and the adjugate matrix adj(A). Assuming the expansion of
the determinant of a matrix in terms of its cofactors, prove that

adj(A)A = det(A)In ,

where In is the n× n identity matrix.

(ii) Let

A =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 .

Show the eigenvalues of A are ±1,±i, where i2 = −1, and determine the diagonal
matrix to which A is similar. For each eigenvalue, determine a non-zero eigenvector.

3/II/10B Linear Algebra

Let S be the vector space of functions f : R → R such that the nth derivative
of f is defined and continuous for every n > 0. Define linear maps A,B : S → S by
A(f) = df/dx and B(f)(x) = xf(x). Show that

[A,B] = 1S ,

where in this question [A,B] means AB −BA and 1S is the identity map on S.

Now let V be any real vector space with linear maps A,B : V → V such that
[A,B] = 1V . Suppose that there is a nonzero element y ∈ V with Ay = 0. Let W be the
subspace of V spanned by y, By, B2y, and so on. Show that A(By) is in W and give
a formula for it. More generally, show that A(Biy) is in W for each i > 0, and give a
formula for it.

Show, using your formula or otherwise, that {y,By,B2y, . . .} are linearly indepen-
dent. (Or, equivalently: show that y,By,B2y, . . . , Bny are linearly independent for every
n > 0.)

4/I/1B Linear Algebra

Define what it means for an n × n complex matrix to be unitary or Hermitian.
Show that every eigenvalue of a Hermitian matrix is real. Show that every eigenvalue of
a unitary matrix has absolute value 1.

Show that two eigenvectors of a Hermitian matrix that correspond to different
eigenvalues are orthogonal, using the standard inner product on Cn.
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4/II/10B Linear Algebra

(i) Let V be a finite-dimensional real vector space with an inner product. Let
e1, . . . , en be a basis for V . Prove by an explicit construction that there is an orthonormal
basis f1, . . . , fn for V such that the span of e1, . . . , ei is equal to the span of f1, . . . , fi for
every 1 6 i 6 n.

(ii) For any real number a, consider the quadratic form

qa(x, y, z) = xy + yz + zx+ ax2

on R3. For which values of a is qa nondegenerate? When qa is nondegenerate, compute
its signature in terms of a.
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1/II/10C Groups, Rings and Modules

Let G be a group, and H a subgroup of finite index. By considering an appropriate
action of G on the set of left cosets of H, prove that H always contains a normal subgroup
K of G such that the index of K in G is finite and divides n!, where n is the index of H
in G.

Now assume that G is a finite group of order pq, where p and q are prime numbers
with p < q. Prove that the subgroup of G generated by any element of order q is necessarily
normal.

2/I/2C Groups, Rings and Modules

Define an automorphism of a group G, and the natural group law on the set Aut(G)
of all automorphisms of G. For each fixed h in G, put ψ(h)(g) = hgh−1 for all g in G.
Prove that ψ(h) is an automorphism of G, and that ψ defines a homomorphism from G
into Aut(G).

2/II/11C Groups, Rings and Modules

Let A be the abelian group generated by two elements x, y, subject to the relation
6x+9y = 0. Give a rigorous explanation of this statement by defining A as an appropriate
quotient of a free abelian group of rank 2. Prove that A itself is not a free abelian group,
and determine the exact structure of A.

3/I/1C Groups, Rings and Modules

Define what is meant by two elements of a group G being conjugate, and prove
that this defines an equivalence relation on G. If G is finite, sketch the proof that the
cardinality of each conjugacy class divides the order of G.
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3/II/11C Groups, Rings and Modules

(i) Define a primitive polynomial in Z[x], and prove that the product of two
primitive polynomials is primitive. Deduce that Z[x] is a unique factorization domain.

(ii) Prove that
Q[x]/(x5 − 4x+ 2)

is a field. Show, on the other hand, that

Z[x]/(x5 − 4x+ 2)

is an integral domain, but is not a field.

4/I/2C Groups, Rings and Modules

State Eisenstein’s irreducibility criterion. Let n be an integer > 1. Prove that
1 + x+ . . .+ xn−1 is irreducible in Z[x] if and only if n is a prime number.

4/II/11C Groups, Rings and Modules

Let R be the ring of Gaussian integers Z[i], where i2 = −1, which you may assume to
be a unique factorization domain. Prove that every prime element of R divides precisely
one positive prime number in Z. List, without proof, the prime elements of R, up to
associates.

Let p be a prime number in Z. Prove that R/pR has cardinality p2. Prove that
R/2R is not a field. If p ≡ 3 mod 4, show that R/pR is a field. If p ≡ 1 mod 4, decide
whether R/pR is a field or not, justifying your answer.
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1/I/2A Geometry

Let σ : R2 → R3 be the map defined by

σ(u, v) = ((a+ b cosu) cos v, (a+ b cosu) sin v, b sinu),

where 0 < b < a. Describe briefly the image T = σ(R2) ⊂ R3. Let V denote the open
subset of R2 given by 0 < u < 2π, 0 < v < 2π; prove that the restriction σ|V defines a
smooth parametrization of a certain open subset (which you should specify) of T . Hence,
or otherwise, prove that T is a smooth embedded surface in R3.

[You may assume that the image under σ of any open set B ⊂ R2 is open in T .]

2/II/12A Geometry

Let U be an open subset of R2 equipped with a Riemannian metric. For
γ : [0, 1] → U a smooth curve, define what is meant by its length and energy. Prove
that length(γ)2 ≤ energy(γ), with equality if and only if γ̇ has constant norm with respect
to the metric.

Suppose now U is the upper half plane model of the hyperbolic plane, and P,Q
are points on the positive imaginary axis. Show that a smooth curve γ joining P and Q
represents an absolute minimum of the length of such curves if and only if γ(t) = i v(t),
with v a smooth monotonic real function.

Suppose that a smooth curve γ joining the above points P and Q represents a
stationary point for the energy under proper variations; deduce from an appropriate form
of the Euler–Lagrange equations that γ must be of the above form, with v̇/v constant.

3/I/2A Geometry

Write down the Riemannian metric on the disc model ∆ of the hyperbolic plane.
Given that the length minimizing curves passing through the origin correspond to
diameters, show that the hyperbolic circle of radius ρ centred on the origin is just the
Euclidean circle centred on the origin with Euclidean radius tanh(ρ/2). Prove that the
hyperbolic area is 2π(cosh ρ− 1).

State the Gauss–Bonnet theorem for the area of a hyperbolic triangle. Given a
hyperbolic triangle and an interior point P , show that the distance from P to the nearest
side is at most cosh−1(3/2).
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3/II/12A Geometry

Describe geometrically the stereographic projection map π from the unit sphere S2

to the extended complex plane C∞ = C∪{∞}, positioned equatorially, and find a formula
for π.

Show that any Möbius transformation T 6= 1 on C∞ has one or two fixed points.
Show that the Möbius transformation corresponding (under the stereographic projection
map) to a rotation of S2 through a non-zero angle has exactly two fixed points z1 and z2,
where z2 = −1/z̄1. If now T is a Möbius transformation with two fixed points z1 and z2
satisfying z2 = −1/z̄1, prove that either T corresponds to a rotation of S2, or one of the
fixed points, say z1, is an attractive fixed point, i.e. for z 6= z2, Tnz → z1 as n→∞.

[You may assume the fact that any rotation of S2 corresponds to some Möbius transfor-
mation of C∞ under the stereographic projection map.]

4/II/12A Geometry

Given a parametrized smooth embedded surface σ : V → U ⊂ R3, where V is an
open subset of R2 with coordinates (u, v), and a point P ∈ U , define what is meant by
the tangent space at P , the unit normal N at P , and the first fundamental form

Edu2 + 2Fdu dv +Gdv2.

[You need not show that your definitions are independent of the parametrization.]

The second fundamental form is defined to be

Ldu2 + 2Mdudv +Ndv2,

where L = σuu · N, M = σuv · N and N = σvv · N. Prove that the partial derivatives
of N (considered as a vector-valued function of u, v) are of the form Nu = aσu + bσv,
Nv = cσu + dσv, where

−
(
L M
M N

)
=

(
a b
c d

) (
E F
F G

)
.

Explain briefly the significance of the determinant ad− bc.
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1/II/11B Analysis II

Let (fn)n>1 be a sequence of continuous real-valued functions defined on a set
E ⊂ R. Suppose that the functions fn converge uniformly to a function f . Prove that f
is continuous on E.

Show that the series
∑∞

n=1 1/n1+x defines a continuous function on the half-open
interval (0, 1].

[Hint: You may assume the convergence of standard series.]

2/I/3B Analysis II

Define uniform continuity for a real-valued function defined on an interval in R.

Is a uniformly continuous function on the interval (0, 1) necessarily bounded?

Is 1/x uniformly continuous on (0, 1)?

Is sin(1/x) uniformly continuous on (0, 1)?

Justify your answers.

2/II/13B Analysis II

Use the standard metric on Rn in this question.

(i) Let A be a nonempty closed subset of Rn and y a point in Rn. Show that there
is a point x ∈ A which minimizes the distance to y, in the sense that d(x, y) 6 d(a, y) for
all a ∈ A.

(ii) Suppose that the set A in part (i) is convex, meaning that A contains the line
segment between any two of its points. Show that point x ∈ A described in part (i) is
unique.
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3/I/3B Analysis II

Let f : R2 → R be a function. What does it mean to say that f is differentiable
at a point (a, b) in R2? Show that if f is differentiable at (a, b), then f is continuous at
(a, b).

For each of the following functions, determine whether or not it is differentiable at
(0, 0). Justify your answers.

(i)

f(x, y) =
{
x2y2(x2 + y2)−1 if (x, y) 6= (0, 0)
0 if (x, y) = (0, 0).

(ii)

f(x, y) =
{
x2(x2 + y2)−1 if (x, y) 6= (0, 0)
0 if (x, y) = (0, 0).

3/II/13B Analysis II

Let f be a real-valued differentiable function on an open subset U of Rn. Assume
that 0 6∈ U and that for all x ∈ U and λ > 0, λx is also in U . Suppose that f is
homogeneous of degree c ∈ R, in the sense that f(λx) = λcf(x) for all x ∈ U and λ > 0.
By means of the Chain Rule or otherwise, show that

Df |x(x) = cf(x)

for all x ∈ U . (Here Df |x denotes the derivative of f at x, viewed as a linear map
Rn → R.)

Conversely, show that any differentiable function f on U with Df |x(x) = cf(x) for
all x ∈ U must be homogeneous of degree c.

4/I/3B Analysis II

Let V be the vector space of continuous real-valued functions on [0, 1]. Show that
the function

||f || =
∫ 1

0

|f(x)| dx

defines a norm on V .

For n = 1, 2, . . ., let fn(x) = e−nx. Is fn a convergent sequence in the space V with
this norm? Justify your answer.
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4/II/13B Analysis II

Let F : [−a, a] × [x0 − r, x0 + r] → R be a continuous function. Let C be the
maximum value of |F (t, x)|. Suppose there is a constant K such that

|F (t, x)− F (t, y)| 6 K|x− y|

for all t ∈ [−a, a] and x, y ∈ [x0 − r, x0 + r]. Let b < min(a, r/C, 1/K). Show that there is
a unique C1 function x : [−b, b] → [x0 − r, x0 + r] such that

x(0) = x0

and
dx

dt
= F (t, x(t)).

[Hint: First show that the differential equation with its initial condition is equivalent to
the integral equation

x(t) = x0 +
∫ t

0

F (s, x(s)) ds.
]
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1/II/12A Metric and Topological Spaces

Suppose that (X, dX) and (Y, dY ) are metric spaces. Show that the definition

d((x1, y1), (x2, y2)) = dX(x1, x2) + dY (y1, y2)

defines a metric on the product X × Y , under which the projection map π : X × Y → Y
is continuous.

If (X, dX) is compact, show that every sequence in X has a subsequence converging
to a point of X. Deduce that the projection map π then has the property that, for any
closed subset F ⊂ X × Y , the image π(F ) is closed in Y . Give an example to show that
this fails if (X, dX) is not assumed compact.

2/I/4A Metric and Topological Spaces

Let X be a topological space. Suppose that U1, U2, . . . are connected subsets of X
with Uj ∩ U1 non-empty for all j > 0. Prove that

W =
⋃
j>0

Uj

is connected. If each Uj is path-connected, prove that W is path-connected.

3/I/4A Metric and Topological Spaces

Show that a topology τ1 is determined on the real line R by specifying that a non-
empty subset is open if and only if it is a union of half-open intervals {a ≤ x < b}, where
a < b are real numbers. Determine whether (R, τ1) is Hausdorff.

Let τ2 denote the cofinite topology on R (that is, a non-empty subset is open if
and only if its complement is finite). Prove that the identity map induces a continuous
map (R, τ1) → (R, τ2).
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4/II/14A Metric and Topological Spaces

Let (M,d) be a metric space, and F a non-empty closed subset of M . For x ∈M ,
set

d(x, F ) = inf
z∈F

d(x, z).

Prove that d(x, F ) is a continuous function of x, and that it is strictly positive for x 6∈ F .

A topological space is called normal if for any pair of disjoint closed subsets F1, F2,
there exist disjoint open subsets U1 ⊃ F1, U2 ⊃ F2. By considering the function

d(x, F1)− d(x, F2),

or otherwise, deduce that any metric space is normal.

Suppose now that X is a normal topological space, and that F1, F2 are disjoint
closed subsets in X. Prove that there exist open subsets W1 ⊃ F1,W2 ⊃ F2, whose
closures are disjoint. In the case when X = R2 with the standard metric topology,
F1 = {(x,−1/x) : x < 0} and F2 = {(x, 1/x) : x > 0}, find explicit open subsets W1,W2

with the above property.
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1/I/3F Complex Analysis or Complex Methods

State the Cauchy integral formula.

Using the Cauchy integral formula, evaluate∫
|z|=2

z3

z2 + 1
dz.

1/II/13F Complex Analysis or Complex Methods

Determine a conformal mapping from Ω0 = C \ [−1, 1] to the complex unit disc
Ω1 = {z ∈ C : |z| < 1}.

[Hint: A standard method is first to map Ω0 to C \ (−∞, 0], then to the complex right
half-plane {z ∈ C : Re z > 0} and, finally, to Ω1.]

2/II/14F Complex Analysis or Complex Methods

Let F = P/Q be a rational function, where degQ > degP + 2 and Q has no real
zeros. Using the calculus of residues, write a general expression for∫ ∞

−∞
F (x)eixdx

in terms of residues and briefly sketch its proof.

Evaluate explicitly the integral∫ ∞

−∞

cosx
4 + x4

dx .
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3/II/14A Complex Analysis

State the Cauchy integral formula, and use it to deduce Liouville’s theorem.

Let f be a meromorphic function on the complex plane such that |f(z)/zn| is
bounded outside some disc (for some fixed integer n). By considering Laurent expansions,
or otherwise, show that f is a rational function in z.

4/I/4A Complex Analysis

Let γ : [0, 1] → C be a closed path, where all paths are assumed to be piecewise
continuously differentiable, and let a be a complex number not in the image of γ. Write
down an expression for the winding number n(γ, a) in terms of a contour integral. From
this characterization of the winding number, prove the following properties:

(a) If γ1 and γ2 are closed paths not passing through zero, and if γ : [0, 1] → C is
defined by γ(t) = γ1(t)γ2(t) for all t, then

n(γ, 0) = n(γ1, 0) + n(γ2, 0).

(b) If η : [0, 1] → C is a closed path whose image is contained in {Re(z) > 0}, then
n(η, 0) = 0.

(c) If γ1 and γ2 are closed paths and a is a complex number, not in the image of
either path, such that

|γ1(t)− γ2(t)| < |γ1(t)− a|

for all t, then n(γ1, a) = n(γ2, a).

[You may wish here to consider the path defined by η(t) = 1− (γ1(t)− γ2(t))/(γ1(t)− a).]
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3/I/5F Complex Methods

Define a harmonic function and state when the harmonic functions f and g are
conjugate.

Let {u, v} and {p, q} be two pairs of harmonic conjugate functions. Prove that
{p(u, v), q(u, v)} are also harmonic conjugate.

4/II/15F Complex Methods

Determine the Fourier expansion of the function f(x) = sinλx, where −π 6 x 6 π,
in the two cases where λ is an integer and λ is a real non-integer.

Using the Parseval identity in the case λ = 1
2 , find an explicit expression for the

sum
∞∑

n=1

n2

(4n2 − 1)2
.
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1/II/14E Methods

Find the Fourier Series of the function

f(θ) =
{

1 0 ≤ θ < π,
−1 π ≤ θ < 2π.

Find the solution φ(r, θ) of the Poisson equation in two dimensions inside the unit
disk r ≤ 1

∇2φ =
1
r

∂

∂r

(
r
∂φ

∂r

)
+

1
r2
∂2φ

∂θ2
= f(θ),

subject to the boundary condition φ(1, θ) = 0.

[Hint: The general solution of r2R′′ + rR′ − n2R = r2 is R = arn + br−n − r2/(n2 − 4). ]

From the solution, show that∫
r≤1

fφ dA = − 4
π

∑
n odd

1
n2(n+ 2)2

.

2/I/5E Methods

Consider the differential equation for x(t) in t > 0

ẍ− k2x = f(t),

subject to boundary conditions x(0) = 0, and ẋ(0) = 0. Find the Green function G(t, t′)
such that the solution for x(t) is given by

x(t) =
∫ t

0

G(t, t′)f(t′) dt′.
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2/II/15E Methods

Write down the Euler–Lagrange equation for the variational problem for r(z)

δ

∫ h

−h

F (z, r, r′) dz = 0,

with boundary conditions r(−h) = r(h) = R, where R is a given positive constant. Show
that if F does not depend explicitly on z, i.e. F = F (r, r′), then the equation has a first
integral

F − r′
∂F

∂r′
=

1
k
,

where k is a constant.

An axisymmetric soap film r(z) is formed between two circular rings r = R at
z = ±H. Find the equation governing the shape which minimizes the surface area. Show
that the shape takes the form

r(z) = k−1 cosh kz.

Show that there exist no solution if R/H < sinhA, where A is the unique positive solution
of A = cothA.

3/I/6E Methods

Describe briefly the method of Lagrangian multipliers for finding the stationary
points of a function f(x, y) subject to a constraint g(x, y) = 0.

Use the method to find the stationary values of xy subject to the constraint
x2

a2
+
y2

b2
= 1.
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3/II/15H Methods

Obtain the power series solution about t = 0 of

(1− t2)
d2

dt2
y − 2t

d
dt
y + λ y = 0 ,

and show that regular solutions y(t) = Pn(t), which are polynomials of degree n, are
obtained only if λ = n(n+ 1), n = 0, 1, 2, . . .. Show that the polynomial must be even or
odd according to the value of n.

Show that ∫ 1

−1

Pn(t)Pm(t) dt = knδnm ,

for some kn > 0.

Using the identity(
x
∂2

∂x2
x+

∂

∂t
(1− t2)

∂

∂t

)
1

(1− 2xt+ x2)
1
2

= 0 ,

and considering an expansion
∑

n an(x)Pn(t) show that

1
(1− 2xt+ x2)

1
2

=
∞∑

n=0

xnPn(t) , 0 < x < 1 ,

if we assume Pn(1) = 1.

By considering ∫ 1

−1

1
1− 2xt+ x2

dt ,

determine the coefficient kn.
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4/I/5H Methods

Show how the general solution of the wave equation for y(x, t),

1
c2
∂2

∂t2
y(x, t)− ∂2

∂x2
y(x, t) = 0 ,

can be expressed as
y(x, t) = f(ct− x) + g(ct+ x) .

Show that the boundary conditions y(0, t) = y(L, t) = 0 relate the functions f and g and
require them to be periodic with period 2L.

Show that, with these boundary conditions,

1
2

∫ L

0

(
1
c2

(∂y
∂t

)2

+
(∂y
∂x

)2
)

dx =
∫ L

−L

g′(ct+ x)2 dx ,

and that this is a constant independent of t.

4/II/16H Methods

Define an isotropic tensor and show that δij , εijk are isotropic tensors.

For x̂ a unit vector and dS(x̂) the area element on the unit sphere show that∫
dS(x̂) x̂i1 . . . x̂in

is an isotropic tensor for any n. Hence show that∫
dS(x̂) x̂ix̂j = aδij ,

∫
dS(x̂) x̂ix̂j x̂k = 0 ,∫

dS(x̂) x̂ix̂j x̂kx̂l = b
(
δijδkl + δikδjl + δilδjk

)
,

for some a, b which should be determined.

Explain why ∫
V

d3x
(
x1 +

√
−1x2

)n
f(|x|) = 0 , n = 2, 3, 4 ,

where V is the region inside the unit sphere.

[The general isotropic tensor of rank 4 has the form a δijδkl + b δikδjl + c δilδjk.]
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1/II/15G Quantum Mechanics

The wave function of a particle of mass m that moves in a one-dimensional
potential well satisfies the Schrödinger equation with a potential that is zero in the region
−a ≤ x ≤ a and infinite elsewhere,

V (x) = 0 for |x| ≤ a , V (x) = ∞ for |x| > a .

Determine the complete set of normalised energy eigenfunctions for the particle and show
that the energy eigenvalues are

E =
~2π2n2

8ma2
,

where n is a positive integer.

At time t = 0 the wave function is

ψ(x) =
1√
5a

cos
(πx

2a

)
+

2√
5a

sin
(πx
a

)
,

in the region −a ≤ x ≤ a, and zero otherwise. Determine the possible results for a
measurement of the energy of the system and the relative probabilities of obtaining these
energies.

In an experiment the system is measured to be in its lowest possible energy
eigenstate. The width of the well is then doubled while the wave function is unaltered.
Calculate the probability that a later measurement will find the particle to be in the lowest
energy state of the new potential well.
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2/II/16G Quantum Mechanics

A particle of mass m moving in a one-dimensional harmonic oscillator potential
satisfies the Schrödinger equation

H Ψ(x, t) = i~
∂

∂t
Ψ(x, t) ,

where the Hamiltonian is given by

H = − ~2

2m
d2

dx2
+

1
2
mω2 x2 .

The operators a and a† are defined by

a =
1√
2

(
βx+

i

β~
p

)
, a† =

1√
2

(
βx− i

β~
p

)
,

where β =
√
mω/~ and p = −i~∂/∂x is the usual momentum operator. Show that

[a, a†] = 1.

Express x and p in terms of a and a† and, hence or otherwise, show that H can be
written in the form

H =
(
a†a+ 1

2

)
~ω .

Show, for an arbitrary wave function Ψ, that
∫
dxΨ∗H Ψ ≥ 1

2~ω and hence that
the energy of any state satisfies the bound

E ≥ 1
2~ω .

Hence, or otherwise, show that the ground state wave function satisfies aΨ0 = 0 and that
its energy is given by

E0 = 1
2~ω .

By considering H acting on a† Ψ0, (a†)2 Ψ0, and so on, show that states of the form

(a†)n Ψ0

(n > 0) are also eigenstates and that their energies are given by En =
(
n+ 1

2

)
~ω.
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3/I/7G Quantum Mechanics

The wave function Ψ(x, t) is a solution of the time-dependent Schrödinger equation
for a particle of mass m in a potential V (x),

H Ψ(x, t) = i~
∂

∂t
Ψ(x, t) ,

where H is the Hamiltonian. Define the expectation value, 〈O〉, of any operator O.

At time t = 0, Ψ(x, t) can be written as a sum of the form

Ψ(x, 0) =
∑

n

an un(x) ,

where un is a complete set of normalized eigenfunctions of the Hamiltonian with energy
eigenvalues En and an are complex coefficients that satisfy

∑
n a

∗
nan = 1. Find Ψ(x, t) for

t > 0. What is the probability of finding the system in a state with energy Ep at time t?

Show that the expectation value of the energy is independent of time.

3/II/16G Quantum Mechanics

A particle of mass µ moves in two dimensions in an axisymmetric potential. Show
that the time-independent Schrödinger equation can be separated in polar coordinates.
Show that the angular part of the wave function has the form eimφ, where φ is the angular
coordinate and m is an integer. Suppose that the potential is zero for r < a, where r is the
radial coordinate, and infinite otherwise. Show that the radial part of the wave function
satisfies

d2R

dρ2
+

1
ρ

dR

dρ
+

(
1− m2

ρ2

)
R = 0 ,

where ρ = r
(
2µE/~2

)1/2. What conditions must R satisfy at r = 0 and R = a?

Show that, when m = 0, the equation has the solution R(ρ) =
∑∞

k=0Ak ρ
k, where

Ak = 0 if k is odd and

Ak+2 = − Ak

(k + 2)2
,

if k is even.

Deduce the coefficients A2 and A4 in terms of A0. By truncating the series
expansion at order ρ4, estimate the smallest value of ρ at which the R is zero. Hence
give an estimate of the ground state energy.

[You may use the fact that the Laplace operator is given in polar coordinates by the
expression

∇2 =
∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂φ2
.

]
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4/I/6G Quantum Mechanics

Define the commutator [A ,B] of two operators, A and B. In three dimensions
angular momentum is defined by a vector operator L with components

Lx = y pz − z py Ly = z px − x pz Lz = x py − y px .

Show that [Lx , Ly] = i ~Lz and use this, together with permutations, to show that
[L2 , Lw] = 0, where w denotes any of the directions x, y, z.

At a given time the wave function of a particle is given by

ψ = (x+ y + z) exp
(
−

√
x2 + y2 + z2

)
.

Show that this is an eigenstate of L2 with eigenvalue equal to 2~2.
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1/II/16H Electromagnetism

For a static charge density ρ(x) show that the energy may be expressed as

E =
1
2

∫
ρφd3x =

ε0
2

∫
E2 d3x ,

where φ(x) is the electrostatic potential and E(x) is the electric field.

Determine the scalar potential and electric field for a sphere of radius R with a
constant charge density ρ. Also determine the total electrostatic energy.

In a nucleus with Z protons the volume is proportional to Z. Show that we may
expect the electric contribution to energy to be proportional to Z

5
3 .

2/I/6H Electromagnetism

Write down Maxwell’s equations in the presence of a charge density ρ and current
density J. Show that it is necessary that ρ,J satisfy a conservation equation.

If ρ,J are zero outside a fixed region V show that the total charge inside V is a
constant and also that

d
dt

∫
V

xρ d3x =
∫

V

J d3x .

2/II/17H Electromagnetism

Assume the magnetic field

B(x) = b(x− 3 ẑ ẑ · x) , (∗)

where ẑ is a unit vector in the vertical direction. Show that this satisfies the expected
equations for a static magnetic field in vacuum.

A circular wire loop, of radius a, mass m and resistance R, lies in a horizontal
plane with its centre on the z-axis at a height z and there is a magnetic field given by
(∗). Calculate the magnetic flux arising from this magnetic field through the loop and also
the force acting on the loop when a current I is flowing around the loop in a clockwise
direction about the z-axis.

Obtain an equation of motion for the height z(t) when the wire loop is falling under
gravity. Show that there is a solution in which the loop falls with constant speed v which
should be determined. Verify that in this situation the rate at which heat is generated by
the current flowing in the loop is equal to the rate of loss of gravitational potential energy.
What happens when R→ 0?
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3/II/17H Electromagnetism

If E(x, t),B(x, t) are solutions of Maxwell’s equations in a region without any
charges or currents show that E′(x, t) = cB(x, t), B′(x, t) = −E(x, t)/c are also solutions.

At the boundary of a perfect conductor with normal n briefly explain why

n ·B = 0 , n×E = 0 .

Electromagnetic waves inside a perfectly conducting tube with axis along the z-axis
are given by the real parts of complex solutions of Maxwell’s equations of the form

E(x, t) = e(x, y) ei(kz−ωt) , B(x, t) = b(x, y) ei(kz−ωt) .

Suppose bz = 0. Show that we can find a solution in this case in terms of a function
ψ(x, y) where

(ex, ey) =
( ∂

∂x
ψ,

∂

∂y
ψ

)
, ez = i

(
k − ω2

kc2

)
ψ ,

so long as ψ satisfies ( ∂2

∂x2
+

∂2

∂y2
+ γ2

)
ψ = 0 ,

for suitable γ. Show that the boundary conditions are satisfied if ψ = 0 on the surface of
the tube.

Obtain a similar solution with ez = 0 but show that the boundary conditions are
now satisfied if the normal derivative ∂ψ/∂n = 0 on the surface of the tube.

4/I/7H Electromagnetism

For a static current density J(x) show that we may choose the vector potential
A(x) so that

−∇2A = µ0J .

For a loop L, centred at the origin, carrying a current I show that

A(x) =
µ0I

4π

∮
L

1
|x− r|

dr ∼ −µ0I

4π
1
|x|3

∮
L

1
2 x× (r× dr) as |x| → ∞ .

[You may assume

−∇2 1
4π|x|

= δ3(x) ,

and for fixed vectors a,b∮
L

a · dr = 0,
∮

L

(a · r b · dr + b · r a · dr) = 0 .

]
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1/I/4G Special Relativity

The four-velocity Uµ of a particle of rest mass m is defined by Uµ = dxµ/dτ ,
where τ is the proper time (the time as measured in the particle’s rest frame). Derive
the expression for each of the four components of Uµ in terms of the components of the
three-velocity and the speed of light, c.

Show that U · U = c2 for an appropriately defined scalar product.

The four-momentum, pµ = mUµ, of a particle of rest mass m defines a relativistic
generalisation of energy and momentum. Show that the standard non-relativistic expres-
sions for the momentum and kinetic energy of a particle with mass m travelling with
velocity v are obtained in the limit v/c� 1. Show also how the concept of a rest energy
equal to mc2 emerges.

2/I/7G Special Relativity

Bob and Alice are twins. Bob accelerates rapidly away from Earth in a rocket that
travels in a straight line until it reaches a velocity v relative to the Earth. It then travels
with constant v for a long time before reversing its engines and decelerating rapidly until
it is travelling at a velocity −v relative to the Earth. After a further long period of time
the rocket returns to Earth, decelerating rapidly until it is at rest. Alice remains on Earth
throughout. Sketch the space-time diagram that describes Bob’s world-line in Alice’s rest
frame, assuming that the periods of acceleration and deceleration are negligibly small
compared to the total time, explain carefully why Bob ages less than Alice between his
departure and his return and show that

∆tB =
(

1− v2

c2

)1/2

∆tA ,

where ∆tB is the time by which Bob has aged and ∆tA is the time by which Alice has
aged.

Indicate on your diagram how Bob sees Alice aging during his voyage.
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4/II/17G Special Relativity

Obtain the Lorentz transformations that relate the coordinates of an event mea-
sured in one inertial frame (t, x, y, z) to those in another inertial frame moving with velocity
v along the x axis. Take care to state the assumptions that lead to your result.

A star is at rest in a three-dimensional coordinate frame S ′ that is moving at
constant velocity v along the x axis of a second coordinate frame S. The star emits light
of frequency ν′, which may considered to be a beam of photons. A light ray from the star
to the origin in S ′ is a straight line that makes an angle θ′ with the x′ axis. Write down
the components of the four-momentum of a photon in this light ray.

The star is seen by an observer at rest at the origin of S at time t = t′ = 0,
when the origins of the coordinate frames S and S ′ coincide. The light that reaches the
observer moves along a line through the origin that makes an angle θ to the x axis and
has frequency ν. Make use of the Lorentz transformations between the four-momenta of
a photon in these two frames to determine the relation

λ = λ′
(

1− v2

c2

)−1/2 (
1 +

v

c
cos θ

)
.

where λ is the observed wavelength of the photon and λ′ is the wavelength in the star’s
rest frame.

Comment on the form of this result in the special cases with cos θ = 1, cos θ = −1
and cos θ = 0.

[You may assume that the energy of a photon of frequency ν is hν and its three-
momentum is a three-vector of magnitude hν/c.]
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1/I/5E Fluid Dynamics

Explain how a streamfunction ψ can be used to represent in Cartesian Coordinates
an incompressible flow in two dimensions. Show that the streamlines are given by
ψ = const.

Consider the two-dimensional incompressible flow

u(x, y, t) = (x+ sin t,−y).

(a) Find the streamfunction, and hence the streamlines at t =
π

2
.

(b) Find the path of a fluid particle released at t = 0 from (x0, 1). For what value of
x0 does the particle not tend to infinity?

1/II/17E Fluid Dynamics

State Bernoulli’s expression for the pressure in an unsteady potential flow with
conservative force −∇χ.

A spherical bubble in an incompressible liquid of density ρ has radius R(t). If the
pressure far from the bubble is p∞ and inside the bubble is pb, show that

pb − p∞ = ρ

(
3
2
Ṙ2 +RR̈

)
.

Calculate the kinetic energy K(t) in the flow outside the bubble, and hence show that

K̇ = (pb − p∞)V̇ ,

where V (t) is the volume of the bubble.

If pb(t) = p∞V0/V , show that

K = K0 + p∞

(
V0 ln

V

V0
− V + V0

)
,

where K = K0 when V = V0.
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2/I/8E Fluid Dynamics

For a steady flow of an incompressible fluid of density ρ, show that

u× ω = ∇H ,

where ω = ∇× u is the vorticity and H is to be found. Deduce that H is constant along
streamlines.

Now consider a flow in the xy-plane described by a streamfunction ψ(x, y). Evaluate
u× ω and deduce from H = H(ψ) that

dH

dψ
+ ω = 0.

3/II/18E Fluid Dynamics

Consider the velocity potential in plane polar coordinates

φ(r, θ) = U

(
r +

a2

r

)
cos θ +

κθ

2π
.

Find the velocity field and show that it corresponds to flow past a cylinder r = a with
circulation κ and uniform flow U at large distances.

Find the distribution of pressure p over the surface of the cylinder. Hence find the
x and y components of the force on the cylinder

(Fx, Fy) =
∫

(cos θ, sin θ)pa dθ.

4/II/18E Fluid Dynamics

A fluid of density ρ1 occupies the region z > 0 and a second fluid of density ρ2

occupies the region z < 0. State the equations and boundary conditions that are satisfied
by the corresponding velocity potentials φ1 and φ2 and pressures p1 and p2 when the
system is perturbed so that the interface is at z = ζ(x, t) and the motion is irrotational.

Seek a set of linearised equations and boundary conditions when the disturbances
are proportional to ei(kx−ωt), and derive the dispersion relation

ω2 =
ρ2 − ρ1

ρ2 + ρ1
gk,

where g is the gravitational acceleration.
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1/I/6F Numerical Analysis

Determine the Cholesky factorization (without pivoting) of the matrix

A =

[ 2 −4 2
−4 10 + λ 2 + 3λ
2 2 + 3λ 23 + 9λ

]
where λ is a real parameter. Hence, find the range of values of λ for which the matrix A
is positive definite.

2/II/18F Numerical Analysis

(a) Let {Qn}n>0 be a set of polynomials orthogonal with respect to some inner
product ( · , · ) in the interval [a, b]. Write explicitly the least-squares approximation to
f ∈ C[a, b] by an nth-degree polynomial in terms of the polynomials {Qn}n>0.

(b) Let an inner product be defined by the formula

(g, h) =
∫ 1

−1

(1− x2)−
1
2 g(x)h(x)dx.

Determine the nth degree polynomial approximation of f(x) = (1− x2)
1
2 with respect to

this inner product as a linear combination of the underlying orthogonal polynomials.

3/II/19F Numerical Analysis

Given real µ 6= 0, we consider the matrix

A =


1
µ 1 0 0
−1 1

µ 1 0
0 −1 1

µ 1
0 0 −1 1

µ

 .

Construct the Jacobi and Gauss–Seidel iteration matrices originating in the solution of
the linear system Ax = b.

Determine the range of real µ 6= 0 for which each iterative procedure converges.

4/I/8F Numerical Analysis

Define Gaussian quadrature.

Evaluate the coefficients of the Gaussian quadrature of the integral∫ 1

−1

(1− x2)f(x)dx

which uses two function evaluations.
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1/I/7D Statistics

The fast-food chain McGonagles have three sizes of their takeaway haggis, Large,
Jumbo and Soopersize. A survey of 300 randomly selected customers at one branch choose
92 Large, 89 Jumbo and 119 Soopersize haggises.

Is there sufficient evidence to reject the hypothesis that all three sizes are equally
popular? Explain your answer carefully.[

Distribution t1 t2 t3 χ2
1 χ2

2 χ2
3 F1,2 F2,3

95% percentile 6·31 2·92 2·35 3·84 5·99 7·82 18·51 9·55

]

1/II/18D Statistics

In the context of hypothesis testing define the following terms: (i) simple hypoth-
esis; (ii) critical region; (iii) size; (iv) power; and (v) type II error probability.

State, without proof, the Neyman–Pearson lemma.

Let X be a single observation from a probability density function f . It is desired
to test the hypothesis

H0 : f = f0 against H1 : f = f1,

with f0(x) = 1
2 |x| e

−x2/2 and f1(x) = Φ′(x), −∞ < x <∞, where Φ(x) is the distribution
function of the standard normal, N(0, 1).

Determine the best test of size α, where 0 < α < 1, and express its power in terms
of Φ and α.

Find the size of the test that minimizes the sum of the error probabilities. Explain
your reasoning carefully.

2/II/19D Statistics

Let X1, . . . , Xn be a random sample from a probability density function f(x | θ),
where θ is an unknown real-valued parameter which is assumed to have a prior density
π(θ). Determine the optimal Bayes point estimate a(X1, . . . , Xn) of θ, in terms of the
posterior distribution of θ given X1, . . . , Xn, when the loss function is

L(θ, a) =
{
γ(θ − a) when θ > a,
δ(a− θ) when θ 6 a,

where γ and δ are given positive constants.

Calculate the estimate explicitly in the case when f(x | θ) is the density of the
uniform distribution on (0, θ) and π(θ) = e−θθn/n!, θ > 0.
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3/I/8D Statistics

Let X1, . . . , Xn be a random sample from a normal distribution with mean µ and
variance σ2, where µ and σ2 are unknown. Derive the form of the size-α generalized
likelihood-ratio test of the hypothesis H0 : µ = µ0 against H1 : µ 6= µ0, and show that it
is equivalent to the standard t-test of size α.

[You should state, but need not derive, the distribution of the test statistic.]

4/II/19D Statistics

Let Y1, . . . , Yn be observations satisfying

Yi = βxi + εi, 1 6 i 6 n,

where ε1, . . . , εn are independent random variables each with the N(0, σ2) distribution.
Here x1, . . . , xn are known but β and σ2 are unknown.

(i) Determine the maximum-likelihood estimates (β̂, σ̂2) of (β, σ2).

(ii) Find the distribution of β̂.

(iii) By showing that Yi − β̂xi and β̂ are independent, or otherwise, determine
the joint distribution of β̂ and σ̂2.

(iv) Explain carefully how you would test the hypothesis H0 : β = β0 against
H1 : β 6= β0.

Part IB 2005



34

1/I/8D Optimization

Consider the problem:

Minimize
m∑

i=1

n∑
j=1

cijxij

subject to
n∑

j=1

xij = ai, i = 1, . . . ,m,

m∑
i=1

xij = bj , j = 1, . . . , n,

xij > 0, for all i, j,

where ai > 0, bj > 0 satisfy
∑m

i=1 ai =
∑n

j=1 bj .

Formulate the dual of this problem and state necessary and sufficient conditions
for optimality.

2/I/9D Optimization

Explain what is meant by a two-person zero-sum game with payoff matrix A = (aij).

Show that the problems of the two players may be expressed as a dual pair of
linear programming problems. State without proof a set of sufficient conditions for a pair
of strategies for the two players to be optimal.
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3/II/20D Optimization

Consider the linear programming problem

maximize 4x1 + x2 − 9x3

subject to x2 − 11x3 6 11
−3x1 + 2x2 − 7x3 6 16

9x1 − 2x2 + 10x3 6 29, xi > 0, i = 1, 2, 3.

(a) After adding slack variables z1, z2 and z3 and performing one pivot in the
simplex algorithm the following tableau is obtained:

x1 x2 x3 z1 z2 z3

z1 0 1 −11 1 0 0 11
z2 0 4

3 − 11
3 0 1 1

3
77
3

x1 1 − 2
9

10
9 0 0 1

9
29
9

Payoff 0 17
9 − 121

9 0 0 − 4
9 − 116

9

Complete the solution of the problem using the simplex algorithm.

(b) Obtain the dual problem and identify its optimal solution from the optimal
tableau in (a).

(c) Suppose that the right-hand sides in the constraints to the original problem
are changed from (11, 16, 29) to (11 + ε1, 16 + ε2, 29 + ε3). Give necessary and sufficient
conditions on (ε1, ε2, ε3) which ensure that the optimal solution to the dual obtained in
(b) remains optimal for the dual for the amended problem.
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4/II/20D Optimization

Describe the Ford–Fulkerson algorithm for finding a maximal flow from a source
to a sink in a directed network with capacity constraints on the arcs. Explain why the
algorithm terminates at an optimal flow when the initial flow and the capacity constraints
are rational.

Illustrate the algorithm by applying it to the problem of finding a maximal flow
from S to T in the network below.

H

GF

E

K J

T

BA

S

D C

5

8

7

6

10

8

9

6

17

11

10

12

4
5

4

10

5
5

7

8

11
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1/II/19D Markov Chains

Every night Lancelot and Guinevere sit down with four guests for a meal at a
circular dining table. The six diners are equally spaced around the table and just before
each meal two individuals are chosen at random and they exchange places from the
previous night while the other four diners stay in the same places they occupied at the last
meal; the choices on successive nights are made independently. On the first night Lancelot
and Guinevere are seated next to each other.

Find the probability that they are seated diametrically opposite each other on the
(n+ 1)th night at the round table, n > 1.

2/II/20D Markov Chains

Consider a Markov chain (Xn)n>0 with state space {0, 1, 2, . . .} and transition
probabilities given by

Pi,j = pqi−j+1, 0 < j 6 i+ 1, and Pi,0 = qi+1 for i > 0,

with Pi,j = 0, otherwise, where 0 < p < 1 and q = 1− p.

For each i > 1, let

hi = P (Xn = 0, for some n > 0 | X0 = i) ,

that is, the probability that the chain ever hits the state 0 given that it starts in
state i. Write down the equations satisfied by the probabilities {hi, i > 1} and hence,
or otherwise, show that they satisfy a second-order recurrence relation with constant
coefficients. Calculate hi for each i > 1.

Determine for each value of p, 0 < p < 1, whether the chain is transient, null
recurrent or positive recurrent and in the last case calculate the stationary distribution.

[Hint: When the chain is positive recurrent, the stationary distribution is geometric.]
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3/I/9D Markov Chains

Prove that if two states of a Markov chain communicate then they have the same
period.

Consider a Markov chain with state space {1, 2, . . . , 7} and transition probabilities
determined by the matrix 

0 1
4

1
4 0 0 1

4
1
4

0 0 0 0 0 0 1
0 0 0 1

3 0 1
3

1
3

1
2 0 0 0 0 1

2 0
1
6

1
6

1
6

1
6 0 1

6
1
6

0 0 0 0 0 1 0
0 1 0 0 0 0 0


.

Identify the communicating classes of the chain and for each class state whether it is open
or closed and determine its period.

4/I/9D Markov Chains

Prove that the simple symmetric random walk in three dimensions is transient.

[You may wish to recall Stirling’s formula: n! ∼ (2π)
1
2 nn+ 1

2 e−n.]
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