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1C

A Sturm-Liouville operator L acts on a function y(x) as,

L y =
1

w(x)

(
− d

dx

[
p(x)

dy

dx

]
+ q(x) y

)
where y(x) is defined on a closed interval.

Show that the eigenvalues of L are real and that eigenfunctions belonging to
distinct eigenvalues are orthogonal with respect to an inner product which you should
define. You may use the fact that L is self-adjoint without proof.

[6]

The Chebyshev equation is

(1− x2)
d2y

dx2
− x dy

dx
+ n2y = 0 .

Put this equation in the form of an eigenvalue equation for a Sturm-Liouville operator
with eigenvalue n2, defined on the interval −1 6 x 6 1, determining the corresponding
functions w(x), p(x) and q(x) and check that y1(x) = x is an eigenfunction with eigenvalue
n2 = 1 .

[8]

Find a second eigenfunction of the form y3(x) = x3 + Bx and determine the
corresponding eigenvalue. Check explicitly that the resulting eigenfunction y3(x) is
orthogonal to y1(x) with respect to the appropriate inner product.

[6]
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2C

The general solution of the Laplace equation

1
r

∂

∂r

(
r
∂T

∂r

)
+

1
r2

∂2T

∂θ2
= 0 (∗)

has the form

T (r, θ) = A0 + C0 log(r) +
∞∑

n=1

(
Anr

n + Cnr
−n
)

cos(nθ) +
∞∑

n=1

(
Bnr

n +Dnr
−n
)

sin(nθ) .

A steady state temperature distribution T (r, θ) obeys the Laplace equation (∗) in the
annulus

a < r < b 0 6 θ < 2π .

The temperature distribution on the boundaries of the annulus at r = a and r = b is fixed
so that it varies linearly with θ with a discontinuity at θ = π. More precisely,

T (a, θ) = µaθ 0 6 θ < π ,

T (a, θ) = µa(θ − 2π) π < θ < 2π ,

and
T (b, θ) = µbθ 0 6 θ < π ,

T (b, θ) = µb(θ − 2π) π < θ < 2π

for some constants µa and µb. Find the temperature distribution in the annulus by
determining the coefficients in the series for the general solution given above.

[20]
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3C

Use the Divergence Theorem to derive the solution

G(x,x0) =
1

2π
log |x− x0|

to the two-dimensional Poisson equation

∇2G = δ(x− x0) .

[6]

A point charge e is placed at x0 with polar coordinates (r, θ) = (r0, θ0) in the two-
dimensional wedge-shaped region W where r > 0 and 0 < θ < π/3 . The two half-lines,
r > 0 , θ = 0 and r > 0 , θ = π/3 , which form the boundary of this region are earthed (so
that the electrostatic potential vanishes there) . Using the method of images show that
the electrostatic potential in W can be written as

Φ(x,x0) = − e

2πε0
log |x− x0| −

e

2πε0

5∑
j=1

sj log |x− xj |

where you should determine the position of the five image points xj in polar coordinates,
illustrate their positions in the plane and also determine the appropriate signs sj = ±1.

[8]

In the special case where r0 = 1 and θ0 = π/6 show that

Φ(x,x0) = − e

4πε0
log
[
r6 − 2r3 sin(3θ) + 1
r6 + 2r3 sin(3θ) + 1

]
.

Hint: You may find it useful to introduce the complex variable z = r exp(iθ).
[6]

Paper 2



5

4C

If f(z) is a complex analytic function with a simple pole at z = z0 define the
residue Res z=z0 [f(z)] . If C is a circle (traversed anti-clockwise) centered at the point
z = z0 which encloses no other singularities of f prove that∮

C

f(z) dz = 2πi Res z=z0 [f(z)] . (∗)

[5]

In the following you may assume that (∗) holds when C is replaced by any closed
contour encircling the simple pole at z = z0 anti-clockwise and no other singularities of f .

Consider the integral

I(R) =
∮

CR

exp(az)
1 + exp(z)

dz

where 0 < a < 1 and CR is a rectangular contour with corners at the points z = ±R ,
±R+ 2πi , for real R , traversed in the anticlockwise direction.

By considering the integral along each side of the rectangle show that

lim
R→∞

[I(R)] = (1− exp (2πia))J ,

where

J =
∫ +∞

−∞

exp(ax)
1 + exp(x)

dx .

Hence show that
J =

π

sin(πa)
.

[15]

5C State Jordan’s Lemma and use it to compute the inverse Fourier transforms of the
following functions f̃(k)

1
a+ ik

,
1

a2 + k2
,

a2 − k2

(a2 + k2)2

where a > 0 .
[20]
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6A

State the transformation rule for components Tij...k of a general Cartesian tensor
of rank n in three dimensions. What does it mean for such a tensor to be isotropic?

An isotropic fourth rank tensor must be of the form

cijkl = α δij δkl + β δik δjl + γ δil δjk

where α , β , γ are scalars. Justify this claim, stating clearly any general result to which
you appeal.

[6]

The stress σij and strain eij in a linear elastic medium are tensors related by

σij = cijkl ekl .

If eij is symmetric and the medium is isotropic (so that cijkl has the form given above)
show that this relation can be expressed

σij = λekk δij + 2µ eij

for certain λ and µ which should be expressed in terms of α , β , γ .

Show also that the strain can be written in the form eij = pδij + dij where dij is
traceless and p is a scalar, to be determined. Hence deduce that the stored elastic energy
density E = 1

2 σij eij is non-negative for any deformation of the solid provided that

µ > 0 and λ > −2µ / 3 .

[14]
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7A

A particle X of mass 3m is suspended vertically downwards from a fixed point O
by a light spring with spring constant 2k. A second particle Y of mass 2m is suspended
vertically downwards from X by a light spring of spring constant k, and a third particle Z
of mass m is suspended vertically downwards from Y by an identical spring, also with
constant k . When the system is in equilibrium, the lengths OX,XY, Y Z are a, b, c
respectively, while the unstretched length of each spring is l.

Consider vertical motion of the particles, with x, y, z being the downward displace-
ments of X,Y, Z from their equilibrium positions (there is no horizontal motion). Write
down an expression for the total potential energy V as a sum of elastic and gravitational
contributions, and hence explain why

V = k x2 +
k

2
(x− y)2 +

k

2
(y − z)2 + V0

where V0 is a constant (depending on a, b, c, l and g , the acceleration due to gravity) which
you need not determine. Find the equations of motion for x , y , z .

[6]

Show that the normal frequencies for vertical motion of the particles are(
k

m

)1/2

,

(
k

m

)1/2 (
1±

√
2
3

)1/2

and find the corresponding vectors which define the normal modes.

[10]

At which normal frequency will all three particles oscillate in phase? If the particles
are released from rest, how should the initial displacements of X and Z be chosen to ensure
that Y remains at its equilibrium position?

[4]

8B

Define the terms ‘normal subgroup’ and ‘coset’.

[2]

If H is a subgroup of a finite group G and G has twice as many elements as H
demonstrate that H is normal in G .

[8]

Show that the order of any subgroup H of G divides the order of G .
[10]
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9B

Let θ : G −→ H be a homomorphism of two groups with kernel K . Show that K
is a normal subgroup of G.

[7]

What is the relationship between the quotient group G/K and H?

[3]

Let GL(n,R) be a group of all invertible n by n matrices and let SL(n,R) be
the subset of GL(n,R) consisting of all matrices of determinant 1 . Show that SL(n,R)
is a normal subgroup of GL(n,R) and that the quotient group GL(n,R)/SL(n,R) is
isomorphic to the multiplicative group of non-zero real numbers.

[10]

10B

Let H = {1,−1, i,−i} be a multiplicative group of order 4 generated by i such
that i2 = −1 .

Consider a map ρ : H −→ GL(2,R) such that

ρ(i) =
(

0 1
−1 0

)
.

Determine ρ(1), ρ(−1) and ρ(−i) such that ρ is a representation.
[10]

The multiplicative quaternion group Q has elements {±1,±i,±j,±k} , where

i2 = j2 = k2 = ijk = −1 .

Show that

i→
(

0 i
i 0

)
, j→

(
i 0
0 −i

)
, k→

(
0 1
−1 0

)

gives rise to a representation of Q in GL(2,C) and construct a representation

D : Q→ GL(4,R)

of Q by 4 by 4 real matrices.
[6]

Let S be an invertible 4 by 4 matrix. Show that the map D̃(q) = SD(q)S−1 where
q ∈ Q is another representation of Q and show that characters of D and D̃ are the same.

[4]

END OF PAPER
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