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SECTION A

1. Let a = (1,−2, 1) and b = (1, 0, 1). Find a vector perpendicular to both a and b. [1]

2. Evaluate the integrals

(a)

I =
∫ π

0

sin 2x sin 4xdx

[1]

(b)

J =
∫ π/2

0

sinx cosxdx.

[1]

3. The function
f(x, y) = 2x− x2y + y

is given.

(a) Verify that the point (x, y) = (1, 1) is a stationary point of f(x, y). [2]

(b) Find the other stationary point. [1]

4. A particle is confined by a potential well given by the function

v(x, y, z) = 3x2 + 3y2 + z2 .

(a) Find the components of the force vector f = −∇v on the particle. [1]

(b) Find ∇ · f . [1]

(c) Find ∇∧ f . [1]

5. The column vectors a =
(

1
3

)
and b =

(
2
1

)
are given. Evaluate

(a) aTb [1]

(b) abT. [1]

6. Give the modulus and the argument (either in degrees or radians) of (1+i)(
√

3+i). [2]

7. Give the first two non-zero terms of the Taylor expansion at x = 0 of

ln (1 + x) .

[2]
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8. A rate process is described by the first order differential equation

dx
dt

= −kx2,

where k > 0 is a rate constant. If x = x0 at time t = 0, determine the time t1/2 at
which x = x0/2. [2]

9. Two balls are picked at random without replacement from a bag containing 3 red
balls and 4 green balls.

(a) What is the probability that the balls have different colours? [2]

(b) What is the expectation value of the number of red balls picked? [1]
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SECTION B

1Y

Find in polar coordinates (r, θ) the equation for the circle S which has radius 1
and is centred at x = 1, y = 0. [3]

Find in polar coordinates the equation for the tangent T to the circle S at the
point (2, 0). [3]

A curve C (known as the Cissoid of Diocles) is defined as follows. Draw a straight
line from the originO which intersects the circle S (again) at pointQ, and intersects
the tangent T at point R. The point P on the line is defined so that OP = QR.
As the point Q moves around the circle, the point P traces out a curve C. Find
the polar equation for the curve C. [6]

Hence or otherwise show that the Cartesian equation for C is

y2(2− x) = x3.

[4]

Sketch the circle S, the tangent T and the curve C. [4]

2Y

Use the substitution t = tan(x/2) to show that∫ π/2

0

dx
2 + sinx

=
∫ 1

0

dt
t2 + t+ 1

.

[10]

Hence, or otherwise, show that∫ π/2

0

dx
2 + sinx

=
π

3
√

3
.

[10]
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3X

(a) The probability of an experiment that involves counting events having the result
N = n (where n is a non-negative integer) is

Pn = Aρn,

where ρ (0 < ρ < 1) is given. Find the normalising constant A. [3]

Calculate the probability that N > n. [2]

Calculate the probability that N > n, conditional on N > m (n > m). [2]

(b) The probability density function for a continuous random variable X is

f(x) = Bρx ≡ Be−λx, (λ = ln(ρ−1))

where x takes values between 0 and ∞. Find the normalising constant B. [3]

Calculate the probability that X > x, conditional on X > y (x > y). [4]

Deduce the probability density function for X, conditional on X > y. [2]

Calculate the variance of X, conditional on X > y. [4]

4Z

(a) Find the general solution of the differential equation

d2y

dx2
+ 4

dy
dx

+ 4y = e2x .

[8]

(b) Find the solution of
d2y

dx2
+ 6

dy
dx

+ 25y = 30 cos 5x ,

given that y = dy/dx = 0 at x = 0. [8]

Sketch the solution for x > 0. [4]
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5T

(a) Give a necessary condition for the expression

u(x, y)dx+ v(x, y)dy

to be an exact differential. [2]

(b) Reduce the following expression to a single partial derivative:(
∂v

∂u

)
y

(
∂u

∂x

)
y

.

[2]

The internal energy U of a gas can be regarded as a function of the entropy S and
the volume V . It is given that

dU = TdS − pdV,

where T is the temperature and p is the pressure.

Show that (
∂T

∂V

)
S

= − T

CV

(
∂p

∂T

)
V

,

where CV =
(

∂U
∂T

)
V

. [9]

For one mole of an ideal gas, pV = RT , CV = (3/2)R and, when S is held constant,
p ∝ V −5/3. Evaluate both sides of the above expression and confirm that they are
equal. [7]
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6Z

(a) A force field F is given in Cartesian coordinates by

F = (2xy + z, x2 + 2y, x) .

Find ∇∧ F. [3]

(b) Find a suitable potential ψ such that F = −∇ψ. [3]

(c) Evaluate
∫

F ·dx along the straight line connecting the origin to the point (1, 1, 1)
and verify that your result is consistent with the change in potential ψ. [4]

(d) The surface S of an ellipsoid is defined parametrically by
x = (b sin θ cosφ, b sin θ sinφ, a cos θ), where 0 6 θ 6 π and 0 6 φ 6 2π. By using

dS =
∂x
∂θ

∧ ∂x
∂φ

dθdφ ,

evaluate directly the integral ∫
S

G · dS

over the surface of the ellipsoid, where

G = (xz2, xy2, z3).

[You should not use the divergence theorem.] [10]
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7S

(a) Below are statements about square matrices A, B and C all having the same
dimension N ×N . Moreover A and B are invertible.

(i) det
(
B−1AB

)
= det (A) [2]

(ii) Tr (ABC) = Tr (BAC) [2]

(iii) A−1 + B−1 = A−1 (A + B)B−1. [2]

Indicate which of these statements is true and which is false. If a statement is
true, give a brief proof of the relation.

(b) Given

C =

 0 0 1
1 0 0
0 1 0

 .

Show that C 2 = C−1. Hence, or otherwise, compute C 16. [4]

(c) The matrix M is defined by

M =

µ 1 0
1 0 1
0 1 µ

 ,

where µ is a real parameter.

(i) What condition must µ satisfy for the inverse M−1 of M to exist? [2]

(ii) Express M−1 as a function of the parameter µ. [4]

(d) The variables x, y and z satisfy the following set of simultaneous linear equations

µx+ y = 1
x+ z = 2
y + µz = 1

,

where µ is a real parameter.

(i) Find the values of x, y and z for all nonzero values of µ. [2]

(ii) Determine the solutions of these equations when µ = 0. What is their locus
in Cartesian space (x, y, z)? [2]
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8X

The function f(x) is periodic with period 2, and

f(x) =
{

0, −1 < x < 0
2x, 0 6 x < 1.

Find its Fourier series. [10]

Deduce the Fourier series of the functions fe(x) and fo(x), both periodic with
period 2, with

fe(x) = |x|, fo(x) = x, −1 < x < 1.

[4]

By considering the Fourier series of fe(x) and fo(x) at suitably-chosen x, show
that

∞∑
r=0

1
(2r + 1)2

=
π2

8
,

[3]
∞∑

r=0

(−1)r

(2r + 1)
=
π

4
.

[3]

9R*

Use the method of Lagrange multipliers to find a stationary value of the function

f(x, y) = 2x2 + y2

along the path
y = (x− 2)2.

[8]

Show that there is only one constrained stationary point. [2]

Draw a sketch of the contours of f(x, y) and superimpose a sketch of the constraint
path. Include the contour that passes through the constrained stationary point
and label its intersections with the coordinate axes and the constraint path. [6]

What is the relationship between the contour and the constraint path at the
constrained stationary point? [2]

Use your sketch to argue that the constrained stationary point is a constrained
minimum. [2]
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10T*

Fluid is flowing between two parallel plates situated at y = 0 and y = 1.
The driving pressure is turned off at time t = 0 and the fluid velocity u(y, t)
subsequently satisfies the partial differential equation

∂u

∂t
= ν

∂2u

∂y2
,

where ν is a positive constant.

Suppose that u can be expressed as the product of two functions,

u(y, t) = Y (y)T (t) .

Show that
d2Y

dy2
= aY,

where a is an arbitrary constant, and find a corresponding ordinary differential
equation for T (t). [8]

The boundary conditions are u(0, t) = u(1, t) = 0 for all t > 0. If initially
u(y, 0) = sin(πy), find the solution for u(y, t) in the interval 0 6 y 6 1. [8]

State the principle of superposition for linear differential equations. Bearing this
in mind, write down the solution for the initial condition u(y, 0) = sin(πy) +
1
10 sin(3πy). [4]

END OF PAPER
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