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1A

(a) If
y = sin−1

( x√
1 + x2

)
,

find
dy

dx
as a function of x.

[4]

(b) Find the first non-zero term in the Taylor series about x = 0 of

x sin(sinx) − sin2 x

x4
.

[8]

(c) Evaluate (without using a calculator)∫ π/6

0

dx

(sinx)
1
2 (cos x)

7
2

.
[8]

[Hint: substitute tanx = u.]
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2A*

(a) A light ray moving in the direction s is reflected off a mirror A whose unit normal
is a. The reflected ray has direction

s′ = As ,

where the matrix A has components

Aij = δij − 2aiaj ,

and ai are the components of the vector a.

Show that A2 = I and A = AT, where AT denotes the transposed matrix and I
is the unit matrix. [6]

(b) The light ray is subsequently reflected off a second mirror B whose unit normal is
b, so that the reflected ray now has direction

s′′ = Bs′ ,

where
Bij = δij − 2bibj .

Calculate BA − AB, and show that the direction of the ray would be the same
if the light ray had first been reflected off B and then A if and only if a is either
parallel or perpendicular to b. [6]

(c) Show, by considering the identity x = a(x · a) +b(x ·b) + c(x · c), that if a, b and
c are three orthonormal vectors then

aiaj + bibj + cicj = δij .

Hence, or otherwise, show that if a laser beam is sent from the earth to the moon
and is reflected off a ‘corner reflector’ with three orthogonal reflectors, then it will
return in exactly the direction opposite to that with which it started out. [8]
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3B

(a) Which of the following vector fields, given in Cartesian coordinates, is conservative?

(i)
F1 = y i + [z cos(yz) + x] j + y cos(yz)k ,

(ii)
F2 = exp(xy) i + exp(x + y) j ,

(iii)
F3 = (2xyz + sinx) i + x2z j + x2y k .

In each case, if F is a conservative vector field, find a scalar potential φ such that
F = ∇φ. [10]

(b) Calculate directly the line integral ∫
C

F3 · dr ,

where the integration path C is

(i) a straight line from (0, 0, 0) to (π, π, π), [5]

(ii) the curve defined by a series of straight lines from (0, 0, 0) to (0, 0, π) then
to (0, π, π) and finally to (π, π, π). [5]
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4B

The element of vector area for a surface S, given in Cartesian coordinates by the
equation f(x, y, z) = 0, can be expressed as

dS =
n

cos α
dxdy ,

where α < π/2 is the angle between the unit vector k in the z-direction and the unit
normal n of S.

(a) Show how to construct from f(x, y, z) a vector field F(x, y, z) such that

dS = Fdxdy

and F · k = 1. [6]

(b) Evaluate the element of vector area dS for the surface S given by

x2(1 + y) + y2z = 1

and bounded by 0 < x < 1, 0 < y < 2. [6]

(c) The flux of a vector field G through the surface S, as specified in part (b), is defined
by

I =
∫

S

G · dS .

Calculate the magnitude |I1 − I2| of the difference between the fluxes of G1 and
G2 through S, where G1 and G2 are:

G1 = y2 i + xk ,

G2 = y2 i + y3 j + xk . [8]
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5C

An ‘apple’ is represented by a solid of revolution defined in spherical polar
coordinates by

r = a(1 − cos θ) .

(a) Assuming the usual correspondence between spherical polar coordinates and Carte-
sian coordinates (x, y, z), sketch the cross-section of the apple in the x = 0 plane,
indicating the points where θ = 0, π/2 and π. [6]

(b) Assuming θ0 > π/2, what is the volume of an infinitesimal slice of the apple
bounded by planes intersecting the surface at constant θ values θ0 and θ0 + dθ? [4]

(c) By using the substitution cos θ = u, evaluate the total volume of the part of the
apple having θ > π/2. [10]

6C*

(a) Find the derivative of ∫ x3

x2

cos(xt)
t

dt

with respect to the parameter x. [7]

(b) By means of a sketch, show that if n is an integer greater than 1, then∫ n+1

n

1
x

dx <
1
n

<

∫ n+1

n

1
x − 1

dx.
[3]

Using this result, show that the quantity

lim
N→∞

{(
N∑

n=1

1
n

)
− lnN

}

is finite, and obtain upper and lower bounds on it. (You should show explicitly
that these bounds are positive.) [10]
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7D

Solve the following differential equations, by determining which are exact and using
an integrating factor for those that are not.

(a)
(2xy2 + 4) dx + 2(x2y − 3) dy = 0 , [6]

(b)
(y2 − x) dx + 2y dy = 0 , [8]

(c)
(cos x − x sinx + y2) dx + 2xy dy = 0 . [6]

8D

(a) A species of bird always lays a nest of four eggs. Each egg may be white (with
probability p) or brown (with probability 1 − p).

(i) Using the notation WnB 4−n, list all possible nest contents together with
their probabilities of occurrence. [6]

(ii) Taking p = 3/4, find the most common nest content. [2]

(b) The discrete variable X assumes values xi = i (i = 1, . . . , 6) with probabilities
pi = 1/6. Calculate:

(i) the expectation value of X , [2]

(ii) the expectation value of X2 , [2]

(iii) the variance of X . [2]

(c) The continuous variable X in the interval [1, 6] has the probability distribution
function

f(x) =

{α , 1 6 x 6 3 ,
0 , 3 < x < 4 ,
α , 4 6 x 6 6 .

Calculate:

(i) the value of α , [2]

(ii) the variance of X . [4]

Paper 2 [TURN OVER



8

9E

(a) Use the method of separation of variables to show that the general solution of the
differential equation

dy

dx
+ (y − a)(y − b) = 0 , (∗)

where a and b are constants and b 6= a, is

y =
a ea(x+c) − b eb(x+c)

ea(x+c) − eb(x+c)
,

where c is an arbitrary constant. [6]

(b) The function z(x) is related to y(x), as found in part (a), by

dz

dx
= yz . (∗∗)

Find the general solution z(x). [4]

(c) Find y(x) and z(x) in the special case when b = a. [6]

(d) By eliminating y between equations (∗) and (∗∗), find the second-order linear
differential equation with constant coefficients satisfied by z(x). [4]
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10E*

(a) Define what is meant by the statement that the series

∞∑
n=1

un (∗)

is convergent. [4]

(b) If un = wn+1 − wn, state a necessary and sufficient condition on wn for the series
(∗) to converge. [2]

(c) State the comparison test for the convergence of a series of positive terms. [3]

(d) By considering the derivatives of each side of the inequality, and the values of each
side at x = 0, or otherwise, show that

1 − (1 + x)−p > px(1 + x)−(p+1) ,

provided that p > 0 and x > 0. Hence, by letting x = 1/n, deduce that

n−p − (n + 1)−p > p(n + 1)−(p+1) ,

provided that p > 0 and n > 0. [5]

(e) Combining the results from parts (b), (c) and (d), show that if k > 1 then the
series

∑∞
n=1 n−k is convergent. [6]
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11F

Let f(x, y) be a function of two variables. x and y can be rewritten in terms of
two new variables u = u(x, y) and v = v(x, y).

(a) Use the chain rule to find
(

∂f

∂x

)
y

in terms of
(

∂f

∂u

)
v

,
(

∂f

∂v

)
u

,
(

∂u

∂x

)
y

and(
∂v

∂x

)
y

.
[3]

(b) Find expressions for
∂2f

∂x2
and

∂2f

∂y2
in terms of derivatives of f with respect to u

and v. [6]

(c) Suppose that
x = u cos v ,

y = u sin v .

Evaluate
∂2f

∂x2
and

∂2f

∂y2
in terms of derivatives of f with respect to u and v.

[6]

(d) A solution to
∂2f

∂x2
+

∂2f

∂y2
= 0

is x2 − y2. Use your results to show that u2 cos(2v) is a solution to

∂2f

∂u2
+

1
u

∂f

∂u
+

1
u2

∂2f

∂v2
= 0 .

[5]

12F

A function of two variables f(x, y) is given by

f(x, y) =
x + y

x2 + y2 + 1

and represents the height of the point (x, y) above the (x, y)-plane.

(a) Find the extrema of this function. [6]

(b) Determine, by examining the second derivatives of f , whether each extremum is a
maximum, a minimum or a saddle point. [8]

(c) Hence sketch a contour plot of f . [6]

END OF PAPER
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