MA 1972 Discrete Mathematics, Probability and Statistics May 2006 - Answers

Section A

- A1 There are 10 choices for each of the first three characters and 26 for each of the last two so the total number of choices is $10^3 \times 26^2 = 676000$.
- A2 (a) Number the balls one to six with the red balls being numbered one to four. Then the sample space Ω is $\{1, 2, 3, 4, 5, 6\}$. Let A be the event that the first ball is red. Then $A = \{1, 2, 3, 4\}$. Since all outcomes are equally likely, $P(A) = |A|/|\Omega| = 2/3$.
 - (b) Let B be the event that the second ball is red. Then B = A and the problem is exactly the same as part a. So $P(B) = |B|/|\Omega| = 2/3$.
 - (c) We want $P(A \cap B)$. Now $P(A \cap B) = P(A) P(B|A)$. We have P(B|A) = 3/5 and so $P(A \cap B) = 2/3 \times 3/5 = 2/5$.
- A3 (a) Since $A \subseteq B$, we have $A \cap B = A$.
 - (b) We need to show that if $x \in A \cap C$ then $x \in B \cap C$. Suppose $x \in A \cap C$, then $x \in A$ and $x \in C$. Since $A \subseteq B$, we must also have $x \in B$ and so $x \in B \cap C$.
- A4 (a) $\mathcal{P}(\{0,1\}) = \{\emptyset, \{0\}, \{1\}, \{0,1\}\} \text{ and } \mathcal{P}(\{\emptyset,1\}) = \{\emptyset, \{\emptyset\}, \{1\}, \{\emptyset,1\}\}.$
 - (b) We use the two results that $|X \times Y| = |X||Y|$ and $|\mathcal{P}(X)| = 2^{|X|}$. Hence

$$|\mathcal{P}(A \times B)| = 2^{|A \times B|} = 2^{|A||B|} = 2^{mn}$$

Section B

- B1 (a) i. The number of choices of meal is $2 \times 4 \times 3 = 24$
 - ii. A meal can consist of a starter and a main course, a main course and a dessert, or a starter and a dessert. There are $2 \times 4 = 8$ of the first type, $4 \times 3 = 12$ of the second and $2 \times 3 = 6$ of the third. Hence the total number is 8 + 12 + 6 = 26.
 - (b) i. To select a Korfball team, we must choose two women and two men. There are $\binom{4}{2} = 6$ ways to choose the women and $\binom{5}{2} = 10$ ways to choose the men. Hence the number of possible teams is $6 \times 10 = 60$.
 - ii. To select an Openball team, we must choose either two women and three men, or three women and two men. The number of teams of the first type is $\binom{4}{2}\binom{5}{3} = 6 \times 10 = 60$. The number of teams of the second type is $\binom{4}{3}\binom{5}{2} = 4 \times 10 = 40$. Hence the total number of possible teams is 60 + 40 = 100.
 - iii. To select a Cantorball team, we first choose the three members of the squad and then choose the player to leave out as substitute. There are nine players in total so there are $\binom{9}{3} = 84$ ways to choose the squad of three. Once the squad is chosen there are three ways to choose the substitute. Hence the total number of teams is $3 \times 84 = 252$.
 - (c) We first show that the statement is true when n = 0. If n = 0 then

$$\sum_{i=0}^{n} (2i^2 + i) = \sum_{i=0}^{0} (2i^2 + i) = 0$$

and

$$\frac{1}{6}n(n+1)(4n+5) = 0,$$

so the statement holds when n = 0.

We now show that if the statement holds when n = m then it remains true when n = m + 1. We will prove the statement for n = m + 1 by using the statement with n = m. When n = m + 1, we have

$$\sum_{i=0}^{m+1} (2i^2 + i) = \sum_{i=0}^{m} (2i^2 + i) + 2(m+1)^2 + (m+1).$$

Using the inductive hypothesis we have

$$\sum_{i=0}^{m} (2i^2 + i) + 2(m+1)^2 + (m+1) = \frac{1}{6}m(m+1)(4m+5) + 2(m+1)^2 + (m+1)$$
$$= \frac{1}{6}(m+1)(m(4m+5) + 12(m+1) + 6)$$
$$= \frac{1}{6}(m+1)(4m^2 + 17m + 18)$$
$$= \frac{1}{6}(m+1)(m+2)(4(m+1) + 5).$$

This is the statement with n = m + 1 and so by induction the result is true for all $n \in \mathbb{N}$.

B2 (a) i. Let X denote the number of matches missed by Michael.

$$P(X = 2) = {\binom{6}{2}} 0.4^2 (1 - 0.4)^{6-2} = 0.31104.$$

ii.

$$P(X \le 2) = P(X = 0) + P(X = 1) + P(X = 2)$$

= $\binom{6}{0} 0.4^0 (1 - 0.4)^{6-0} + \binom{6}{1} 0.4^1 (1 - 0.4)^{6-1} + \binom{6}{2} 0.4^2 (1 - 0.4)^{6-2}$
= 0.046656 + 0.186624 + 0.31104
= 0.54432.

iii. We require $P(X = 2 | X \le 2)$. However

$$\mathbf{P}(X=2|X\leq 2) = \frac{\mathbf{P}(X=2\cap X\leq 2)}{\mathbf{P}(X\leq 2)} = \frac{\mathbf{P}(X=2)}{\mathbf{P}(X\leq 2)} = \frac{0.31104}{0.54432} = \frac{4}{7}.$$

(b) i. Let Y denote the number of suits bought by a random customer.

$$P(Y=2) = \frac{e^{-0.4}0.4^2}{2!} \simeq 0.0536.$$

ii.

$$P(Y \ge 2) = 1 - P(Y < 2)$$

= 1 - (P(Y = 0) + P(Y = 1))
= 1 - e^{-0.4} - 0.4e^{-0.4}
\approx 0.0616

- iii. The sum of 10 independent random variables having the Poisson distribution with parameter 0.4 is a random variable having the Poisson distribution with parameter 4.
- iv. Let E_1 and E_2 be the events that the first two customers to the shop do not buy a suit. We require $P(E_1 \cap E_2)$. Note that E_1 and E_2 are independent. Hence

$$P(E_1 \cap E_2) = P(E_1) P(E_2) = (e^{-0.4})^2 \simeq 0.4493.$$

v. Let E be the event that no-one buys a suit between 9.00 and 10.00. Let X_0 , X_1 , X_2 be the events that there are respectively 0, 1, 2 customers. Then

$$P(E) = P(E|X_0) P(X_0) + P(E|X_1) P(X_1) + P(E|X_2) P(X_2)$$

= 1 × 0.5² + e^{-0.4} × 2 × 0.5² + 0.4493 × 0.5²
= 0.6975.