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Only calculators approved by the Department of Mathematical Sciences may be used in
this examination. Calculator memories must be clear at the start of the examination.

Marks may be deducted for answers that do not show clearly how the solution is

reached.

Answer THREE questions. All questions carry equal weight.

The following notation will be used
? q denotes the number of elements in a finite field Fq. Thus, q = pm for some prime p.

? Γ(S;Fq) denotes the vector space of all functions f :S → Fq where S is a given finite set.

? w denotes the weight function

? the dot product of vectors in Fnq is denoted by u • v.

(a) Define a generator matrix of a code. Explain what is meant by a self-dual code.1.

(b) Consider a binary self dual code C ⊆ Fn2 . Show that v • v = 0 for every v ∈ C and
deduce that w(v) is even.

(c) Given a self dual code C, use (b) to show that the weight enumerator polynomial
WC(X,Y ) of C satisfies

(i) WC(X,Y ) = WC(X,−Y ) (ii) WC(X,Y ) = WC(X+Y√
2
, X−Y√

2
)

and deduce from (i) and (ii), or show otherwise, that WC(X,Y ) = WC(Y,X).

(d) Deduce from (c) that for every j = 0, . . . , n, the number of codewords of weight j in a
self dual code C is equal to the number of codewords of weight n− j.

(a) What is meant by the weight of a vector v ∈ Fnq ? Define the term minimum distance2.
of a code.

Vectors x = (x1, . . . , xn) ∈ Fnq and x′ = (x′1, . . . , x
′
n′) ∈ Fn

′

q can be concatenated to form a
vector (x, x′) = (x1, . . . , xn, x

′
1, . . . , x

′
n′) in Fn+n′

q .

Let C ⊆ Fnq and C ′ ⊆ Fn′q be non-zero codes of type [n, k, d] and [n′, k′, d′] respectively.
Form the code C⊕C ′ as the subspace of Fn+n′

q consisting of all the pairs (v, v′) where v ∈ C
and v′ ∈ C ′ (by this we mean “concatenation” of v and v′. You are NOT required to show
that C ⊕ C ′ is a subspace of Fn+n′

q ).

(b) Show that for every x ∈ Fnq and x′ ∈ Fn′q one has w((x, x′)) = w(x) + w(x′).

(c) Show that C ⊕ C ′ has dimension k + k′ and minimum distance min{d, d′}.

(continued on next page)
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(d) Show that (x, x′) • (y, y′) = x • y + x′ • y′ for any x, y ∈ Fnq and x′, y′ ∈ Fn′q .

Use this to prove that C⊥⊕C ′⊥ ⊆ (C ⊕C ′)⊥. Calculate the dimensions of these codes and
deduce that in fact equality holds: C⊥ ⊕ C ′⊥ = (C ⊕ C ′)⊥.

(a) Explain the term perfect code.3.

(b) Let V denote Fm2 for some m > 1. Recall that Hamming’s code of length 2m − 1 is
defined as the subspace C of Γ(V − {0};F2) consisting of the functions f : V − {0} → F2

which satisfy ∑
x∈V−{0}

f(x)x = 0.

Show that C has parameters [2m − 1, 2m − 1−m, 3].

(c) Show that given two distinct codewords x, y in a code C of type [n, k, d] then the open

balls B(x,
d

2
) and B(y,

d

2
) are disjoint. Use the fact that #B(x,

d

2
) =

e∑
j=0

(
n

j

)
(q − 1)j for

any vector x to prove Hamming’s bound

e∑
j=0

(
n

j

)
(q − 1)j ≤ qn−k.

(d) State Hamming’s criterion for perfectness of codes and use it to show that the Hamming
codes (m > 1) are perfect.

(a) Explain what a check matrix of a code is.4.

(b) Fix a finite field Fq and k ≤ q. Recall that the Reed-Solomon code RSk(q) over Fq is
defined as the subspaces of polynomial functions of degree < k in Γ(Fq,Fq).

Prove that RSk(q) has parameters [q, k, q − k + 1] provided k > 0.

(c) Recall that vectors v1, . . . , vk in a vector space V are called linearly dependent if there
exist λ1 . . . , λk in Fq, not all zero, such that

∑k
i=1 λi vi = 0.

Consider a code C of type [n, k, d] where k ≥ 1 with a check matrix H. Use the fact that in
Fmq any m+ 1 vectors are linearly dependent, to deduce that C contains a non-zero vector
v whose weight is ≤ n− k + 1.

(d) State Singleton’s bound relating the minimal distance d of a code C with its dimension
k and its length n. Deduce it from (c), or otherwise.

Show that the Reed-Solomon codes attain this bound.
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